
 X. PURPOSE

 Program or Be Programmed

 Digital technology is programmed. This makes it biased toward
those with the capacity to write the code. In a digital age, we must
learn how to make the so! ware, or risk becoming the so! ware. It
is not too diffi cult or too late to learn the code behind the things
we use—or at least to understand that there is code behind their
interfaces. Otherwise, we are at the mercy of those who do the
programming, the people paying them, or even the technology itself.

129 PROGRAM OR BE PROGRAMMED

 One of the US Air Force generals charged with building
and protecting the Global Information Grid has a problem:
recruitment. As the man in charge of many of the Air Force’s
coolest computer toys, he has no problem a! racting kids who
want to fl y drones, shoot lasers from satellites, or steer missiles
into Persian Gulf terrorist camps from the safety of Shreveport.
They’re lining up for those assignments. No, the general’s
challenge is fi nding kids capable of programming these
weapons systems—or even having the education, inclination,
and mental discipline required to begin learning programming
from scratch.

 Raised on commercial video games that were themselves
originally based on combat simulation technologies, these
recruits have enviable refl exes and hand-eye coordination.
They are terrifi c virtual pilots. Problem is, without an infl ux
of new programmers capable of maintaining the code and
fi xing bugs—much less upgrading and innovating new
technologies—the general cannot keep his operation at
mission readiness. His last resort has been to give lectures at
education conferences in which he pleads with high schools to
put programming into their curriculums.

 That’s right: America, the country that once put men
on the moon, is now falling behind most developed and
many developing nations in computer education. We do
not teach programming in most public schools. Instead of
teaching programming, most schools with computer literacy

130 DOUGLAS RUSHKOFF

curriculums teach programs . Kids learn how to use popular
spreadsheet, word processing, and browsing so" ware so that
they can operate eff ectively in the high-tech workplace. These
basic skills may make them more employable for the entry-
level cubicle jobs of today, but they will not help them adapt to
the technologies of tomorrow.

 Their bigger problem is that their entire orientation to
computing will be from the perspective of users. When a kid
is taught a piece of so" ware as a subject, she’ll tend to think of
it like any other thing she has to learn. Success means learning
how to behave in the way the program needs her to. Digital
technology becomes the immutable thing, while the student is
the movable part, conforming to the needs of the program in
order to get a good grade on the test.

 Meanwhile, kids in other countries—from China to
Iran—aren’t wasting their time learning how to use off -the-
shelf commercial so" ware packages. They are fi nding out
how computers work. They learn computer languages, they
write so" ware and, yes, some of them are even taught the
cryptography and other skills they need to breach Western
cyber-security measures. According to the Air Force general,
it’s just a ma! er of a generation before they’ve surpassed us.

 While military superiority may not be everyone’s
foremost goal, it can serve as a good indicator of our general
competitiveness culturally and economically with the rest
of the world. As we lose the ability to program the world’s

131 PROGRAM OR BE PROGRAMMED

computers, we lose the world’s computing business as well.
This may not be a big deal to high-tech conglomerates who can
as easily source their programming from New Delhi as New
Hampshire. But it should be a big deal to us.

 Instead, we see actual coding as some boring chore,
a working-class skill like bricklaying, which may as well
be outsourced to some poor nation while our kids play
and even design video games. We look at developing the
plots and characters for a game as the interesting part,
and the programming as the rote task be! er offl oaded to
people somewhere else. We lose sight of the fact that the
programming—the code itself—is the place from which the
most signifi cant innovations emerge.

 Okay, you say, so why don’t we just make sure there
are a few students interested in this highly specialized area
of coding so that we can keep up militarily and economically
with everyone else? Just because a few of us need to know how
to program, surely that doesn’t mean we all need to know
programming, does it? We all know how to drive our cars, yet
few of us know how our automobiles actually work, right?

 True enough, but look where that’s go! en us: We spend
an hour or two of what used to be free time operating a
dangerous two-ton machine and, on average, a full workday
each week paying to own and maintain it. [9] Throughout the

 9. The Bureau of Labor Statistics (h! p://www.bls.gov/) updates these fi gures
yearly.

132 DOUGLAS RUSHKOFF

twentieth century, we remained blissfully ignorant of the real
biases of automotive transportation. We approached our cars
as consumers, through ads, rather than as engineers or, be! er,
civic planners. We gladly surrendered our public streetcars to
private automobiles, unaware of the real expenses involved.
We surrendered our highway policy to a former General
Motors chief, who became secretary of defense primarily
for the purpose of making public roads suitable for private
cars and spending public money on a highway system. We
surrendered city and town life for the commuting suburbs,
unaware that the bias of the automobile was to separate home
from work. As a result, we couldn’t see that our national
landscape was being altered to manufacture dependence on
the automobile. We also missed the possibility that these
vehicles could make the earth’s atmosphere unfi t for human
life, or that we would one day be fi ghting wars primarily to
maintain the fl ow of oil required to keep them running.

 So considering the biases of a technology before and
during its implementation may not be so trivial a" er all. In the
case of digital technology, it is even more important than usual.
The automobile determined a whole lot about how we’d get
from place to place, as well as how we would reorganize our
physical environment to promote its use. Digital technology
doesn’t merely convey our bodies, but ourselves. Our screens
are the windows through which we are experiencing,
organizing, and interpreting the world in which we live. They

133 PROGRAM OR BE PROGRAMMED

are also the interfaces through which we express who we are
and what we believe to everyone else. They are fast becoming
the boundaries of our perceptual and conceptual apparatus;
the edge between our nervous systems and everyone else’s, our
understanding of the world and the world itself.

 If we don’t know how they work, we have no way
of knowing what is really out there. We cannot truly
communicate, because we have no idea how the media we
are using bias the messages we are sending and receiving.
Our senses and our thoughts are already clouded by our own
misperceptions, prejudices, and confusion. Our digital tools
add yet another layer of bias on top of that. But if we don’t
know what their intended and accidental biases are, we don’t
stand a chance of becoming coherent participants in the digital
age. Programming is the sweet spot, the high leverage point
in a digital society. If we don’t learn to program, we risk
being programmed ourselves.

 The irony here is that computers are frigh& ully easy to
learn. Programming is immensely powerful, but it is really no
big deal to learn. Back in the 1970s, when computers were
supposedly harder to use, there was no diff erence between
operating a computer and programming one. Be! er public
schools off ered computer classes starting in the sixth or
seventh grade, usually as an elective in the math department.
Those of us lucky to grow up during that short window of
opportunity learned to think of computers as “anything

134 DOUGLAS RUSHKOFF

machines.” They were blank slates, into which we wrote our
own so" ware. The applications we wrote were crude and
o" en rather pointless—like teaching the computer to list
prime numbers, draw pictures with text, or, as in my own
fi nal project, decide how to prioritize the decisions of an
elevator car.

 I’m sure only one or two of us actually graduated to
become professional programmers, but that wasn’t the
point. All of us came to understand what programming is,
how programmers make decisions, and how those decisions
infl uence the ways the so" ware and its users function.
For us, as the mystery of computers became the science of
programming, many other mysteries seemed to vanish as well.
For the person who understands code, the whole world reveals
itself as a series of decisions made by planners and designers
for how the rest of us should live. Not just computers, but
everything from the way streets are organized in a town to
the way election rules (are tilted for a purpose vote for any
three candidates) begin to look like what they are: sets of
rules developed to promote certain outcomes. Once the biases
become apparent, anything becomes possible. The world and
its many arbitrary systems can be hacked.

 Early computers were built by hackers, whose own biases
ended up being embedded in their technologies. Computers
naturally encouraged a hacker’s approach to media and
technology. They made people less interested in buying media

135 PROGRAM OR BE PROGRAMMED

and a bit more interested in making and breaking it. They also
turned people’s a! ention away from sponsored shows and
toward communicating and sharing with one another. The
problem was that all this communicating and sharing was bad
for business.

 So the people investing in so" ware and hardware
development sought to discourage this hacker’s bias by
making interfaces more complex. The idea was to turn
the highly transparent medium of computing into a more
opaque one, like television. Interfaces got thicker and more
supposedly “user friendly” while the real workings of the
machine got buried further in the background. The easy
command-line interface (where you just type a word telling
the machine what you want it to do) was replaced with
clicking and dragging and pointing and watching. It’s no
coincidence that installing a program in Windows required
us to summon “The Wizard”—not the helper, the puppy, or
even that "Paper Clip Man." No, we needed the Wizard to
re-mystify the simple task of dragging an application into the
applications folder, and maybe a database fi le somewhere else.
If we had been privy to everything the Wizard was doing on
our behalf, then we may have even been able to uninstall the
entire program without purchasing one of those hard drive
sweeping utilities. Instead, we were told not to look behind
the curtain.

 It was all supposedly safer that way. Accepting the

136 DOUGLAS RUSHKOFF

computer salesman’s pitch as technological truth, we bought
the false premise that the more open a device was to us, the
more open it was to every bad person out there. Be! er to buy
a locked-down and locked-up device, and then just trust the
company we bought it from to take care of us. Like it used to
say on the back of the TV set: Hazard of electric shock. No user
serviceable parts inside . Computing and programming were
to be entrusted to professionals. Consumers can decorate
their desktops the way they like, and pick which programs
to purchase, but heaven forbid they trust an unauthorized
vendor or, worse, try to do something themselves. They must
do everything through the centralized applications program,
through the exclusive carrier, and not try to alter any of it. The
accepted logic is that these closed technologies and systems
are safer and more dependable.

 Of course none of this is really true. And the only way
you‘d really know this is if you understood programming.
Fully open and customizable operating systems, like Linux,
are much more secure than closed ones such as Microso"
Windows. In fact, the back doors that commercial operating
systems leave for potential vendors and consumer research
have made them more vulnerable to a! ack than their open
source counterparts. This threat is compounded by the way
commercial vendors keep their source code a secret. We aren’t
even to know the ways we are vulnerable. We are but to trust.
Even the Pentagon is discouraged from developing its own

137 PROGRAM OR BE PROGRAMMED

security protocols through the Linux pla& orm, by a Congress
heavily lobbied to promote Windows. [10]

 Like the military, we are to think of our technologies in
terms of the applications they off er right out of the box instead
of how we might change them or write our own. We learn
what our computers already do instead of what we can make
them do. This isn’t even the way a kid naturally approaches
a video game. Sure, a child may play the video game as it’s
supposed to be played for a few dozen or hundred hours.
When he gets stuck, what does he do? He goes online to fi nd
the “cheat codes” for the game. Now, with infi nite ammunition
or extra-strength armor, he can get through the entire game. Is
he still playing the game? Yes, but from outside the confi nes of
the original rules. He’s gone from player to cheater.

 A" er that, if he really likes the game, he goes back online
to fi nd the modifi cation kit—a simple set of tools that lets a
more advanced user change the way the game looks and feels.
So instead of running around in a dungeon fi ghting monsters,
a kid might make a version of the game where players run
around in a high school fi ghting their teachers—much to the
chagrin of parents and educators everywhere. He uploads his
version of the game to the Internet, and watches with pride as
dozens or even hundreds of other kids download and play his
game, and then comment about it on gamers’ bulletin boards.

10. See Richard Clarke, Cyberwar: The Next Threat to National Security (New
York: HarperCollins, 2010).

138 DOUGLAS RUSHKOFF

The more open it is to modifi cation, the more consistent
so" ware becomes with the social bias of digital media.

 Finally, if the version of the game that kid has developed
is popular and interesting enough, he just may get a call from
a gaming company looking for new programmers. Then,
instead of just creating his own components for some other
programmer’s game engine, he will be ready to build his own.

 These stages of development—from player to cheater
to modder to programmer—mirror our own developing
relationship to media through the ages. In preliterate
civilizations, people a! empted to live their lives and appease
their gods with no real sense of the rules. They just did what
they could, sacrifi cing animals and even children along the
way to appease the gods they didn’t understand. The invention
of text gave them a set of rules to follow—or not. Now,
everyone was a cheater to some extent, at least in that they
had the choice of whether to go by the law, or to evade it. With
the printing press came writing. The Bible was no longer set in
stone, but something to be changed––or at least reinterpreted.
Martin Luther posted his ninety-fi ve theses, the fi rst great
“mod” of Catholicism, and later, nations rewrote their histories
by launching their revolutions.

 Finally, the invention of digital technology gives us
the ability to program: to create self-sustaining information
systems, or virtual life. These are technologies that carry
on long a" er we’ve created them, making future decisions

139 PROGRAM OR BE PROGRAMMED

without us. The digital age includes robotics, genetics,
nanotechnology, and computer programs—each capable of
self-regulation, self-improvement, and self-perpetuation. They
can alter themselves, create new versions of themselves, and
even collaborate with others. They grow. These are not just
things you make and use. These are emergent forms that are
biased toward their own survival. Programming in a digital age
means determining the codes and rules through which our
many technologies will build the future—or at least how they
will start out.

 The problem, as I explained in the introduction, is that
we haven’t actually seized the capability of each great media
age. We have remained one dimensional leap behind the
technology on off er. Before text, only the Pharaoh could hear
the words of the gods. A" er text, the people could gather in the
town square and hear the word of God read to them by a rabbi.
But only the rabbi could read the scroll. The people remained
one stage behind their elite. A" er the printing press a great
many people learned to read, but only an elite with access
to the presses had the ability to write. People didn’t become
authors; they became the gaming equivalent of the “cheaters”
who could now read the Bible for themselves and choose
which laws to follow.

 Finally, we have the tools to program. Yet we are content
to seize only the capability of the last great media renaissance,
that of writing. We feel proud to build a web page or fi nish our

140 DOUGLAS RUSHKOFF

profi le on a social networking site, as if this means we are now
full-fl edged participants in the cyber era. We remain unaware
of the biases of the programs in which we are participating, as
well as the ways they circumscribe our newfound authorship
within their predetermined agendas. Yes, it is a leap forward,
at least in the sense that we are now capable of some active
participation, but we may as well be sending text messages to
the producers of a TV talent show, telling them which of their
ten contestants we think sings the best. Such are the limits of
our interactivity when the ways in which we are allowed to
interact have been programmed for us in advance.

 Our enthusiasm for digital technology about which we
have li! le understanding and over which we have li! le control
leads us not toward greater agency, but toward less. We end up
at the mercy of voting machines with “black box” technologies
known only to their programmers, whose neutrality we must
accept on faith. We become dependent on search engines and
smart phones developed by companies we can only hope value
our productivity over their bo! om lines. We learn to socialize
and make friends through interfaces and networks that may
be more dedicated to fi nding a valid advertising model than
helping us fi nd one another.

 Yet again, we have surrendered the unfolding of a
new technological age to a small elite who have seized the
capability on off er. But while Renaissance kings maintained
their monopoly over the printing presses by force, today’s elite

141 PROGRAM OR BE PROGRAMMED

is depending on li! le more than our own disinterest. We are
too busy wading through our overfl owing inboxes to consider
how they got this way, and whether there’s a be! er or less
frantic way to stay informed and in touch. We are intimidated
by the whole notion of programming, seeing it as a chore for
mathematically inclined menials than a language through
which we can re-create the world on our own terms.

 We’re not just building cars or televisions sets—devices
that, if we later decide we don’t like, we can choose not to
use. We’re tinkering with the genome, building intelligent
machines, and designing nanotechnologies that will continue
where we leave off . The biases of the digital age will not just be
those of the people who programmed it, but of the programs,
machines, and life-forms they have unleashed. In the short
term, we are looking at a society increasingly dependent
on machines, yet decreasingly capable of making or even
using them eff ectively. Other societies, such as China, where
programming is more valued, seem destined to surpass us—
unless, of course, the other forms of cultural repression in
force there off set their progress as technologists. We shall see.
Until push comes to shove and geopolitics force us to program
or perish, however, we will likely content ourselves with the
phone apps and social networks on off er. We will be driven
toward the activities that help distract us from the coming
challenges—or stave them off —rather than the ones that
encourage us to act upon them.

142 DOUGLAS RUSHKOFF

 But futurism is not an exact science, particularly where
technology is concerned. In most cases, the real biases of a
technology are not even known until that technology has had
a chance to exist and replicate for a while. Technologies created
for one reason usually end up having a very diff erent use and
eff ect. The “missed call” feature on cell phones ended up being
hacked to give us text messaging. Personal computers, once
connected to phone lines, ended up becoming more useful as
Internet terminals. Our technologies only submit to our own
needs and biases once we hack them in one way or another.
We are in partnership with our digital tools, teaching them
how to survive and spread by showing them how they can
serve our own intentions. We do this by accepting our roles as
our programs’ true users, rather than subordinating ourselves
to them and becoming the used.

 In the long term, if we take up this challenge, we
are looking at nothing less than the conscious, collective
intervention of human beings in their own evolution. It’s the
opportunity of a civilization’s lifetime. Shouldn’t more of us
want to participate actively in this project?

 Digital technologies are diff erent. They are not just
objects, but systems embedded with purpose. They act with
intention. If we don’t know how they work, we won’t even
know what they want. The less involved and aware we are
of the way our technologies are programmed and program

143 PROGRAM OR BE PROGRAMMED

themselves, the more narrow our choices will become; the
less we will be able to envision alternatives to the pathways
described by our programs; and the more our lives and
experiences will be dictated by their biases.

 On the other hand, the more humans become involved
in their design, the more humanely inspired these tools
will end up behaving. We are developing technologies and
networks that have the potential to reshape our economy, our
ecology, and our society more profoundly and intentionally
than ever before in our collective history. As biologists now
understand, our evolution as a species was not a product of
random chance, but the forward momentum of ma! er and
life seeking greater organization and awareness. This is not a
moment to relinquish our participation in that development,
but to step up and bring our own sense of purpose to the table.
It is the moment we have been waiting for.

 For those who do learn to program see the rest of the
world diff erently as well.

 Even if we don’t all go out and learn to program—
something any high school student can do with a decent
paperback on the subject and a couple of weeks of eff ort—we
must at least learn and contend with the essential biases of
the technologies we will be living and working with from
here on.

 I’ve endeavored to explain ten of the most signifi cant

144 DOUGLAS RUSHKOFF

ones here, as well as how to turn them from liabilities into
opportunities. But you will surely continue to fi nd others.
I encourage you to explore them, come up with your own
strategies, and then share them with others—including me.

 If living in the digital age teaches us anything, it is that
we are all in this together. Perhaps more so than ever.

