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Machine learning systeMs automatically learn 
programs from data. This is often a very attractive 
alternative to manually constructing them, and in the 
last decade the use of machine learning has spread 
rapidly throughout computer science and beyond. 
Machine learning is used in Web search, spam filters, 
recommender systems, ad placement, credit scoring, 
fraud detection, stock trading, drug design, and many 
other applications. A recent report from the McKinsey 
Global Institute asserts that machine learning (a.k.a. 
data mining or predictive analytics) will be the driver 
of the next big wave of innovation.15 Several fine 
textbooks are available to interested practitioners and 
researchers (for example, Mitchell16 and Witten et 
al.24). However, much of the “folk knowledge” that 

is needed to successfully develop 
machine learning applications is not 
readily available in them. As a result, 
many machine learning projects take 
much longer than necessary or wind 
up producing less-than-ideal results. 
Yet much of this folk knowledge is 
fairly easy to communicate. This is 
the purpose of this article.
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Tapping into the “folk knowledge” needed to 
advance machine learning applications.

by Pedro domingos

a few useful 
things to 
Know about 
machine 
Learning

 key insights

    machine learning algorithms can figure 
out how to perform important tasks 
by generalizing from examples. this is 
often feasible and cost-effective where 
manual programming is not. as more 
data becomes available, more ambitious 
problems can be tackled.

    machine learning is widely used in 
computer science and other fields. 
however, developing successful 
machine learning applications requires a 
substantial amount of “black art” that is 
difficult to find in textbooks.

    this article summarizes 12 key lessons 
that machine learning researchers and 
practitioners have learned. these include 
pitfalls to avoid, important issues to focus 
on, and answers to common questions. 
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Many different types of machine 
learning exist, but for illustration 
purposes I will focus on the most 
mature and widely used one: clas-
sification. Nevertheless, the issues I 
will discuss apply across all of ma-
chine learning. A classifier is a sys-
tem that inputs (typically) a vector 
of discrete and/or continuous fea-
ture values and outputs a single dis-
crete value, the class. For example, 
a spam filter classifies email mes-
sages into “spam” or “not spam,” 
and its input may be a Boolean vec-
tor x = (x1,…,xj,…,xd), where xj = 1 if 
the jth word in the dictionary appears 
in the email and xj = 0 otherwise. A 
learner inputs a training set of ex-
amples (xi, yi), where xi = (xi,1

 , . . . , 
xi,d) is an observed input and yi is the 
corresponding output, and outputs 
a classifier. The test of the learner is 
whether this classifier produces the 
correct output yt for future examples 
xt (for example, whether the spam 
filter correctly classifies previously 
unseen email messages as spam or 
not spam).

Learning = Representation + 
Evaluation + optimization
Suppose you have an application that 
you think machine learning might be 
good for. The first problem facing you 
is the bewildering variety of learning al-
gorithms available. Which one to use? 
There are literally thousands available, 
and hundreds more are published each 
year. The key to not getting lost in this 
huge space is to realize that it consists 
of combinations of just three compo-
nents. The components are:

 ˲ Representation. A classifier must 
be represented in some formal lan-
guage that the computer can handle. 
Conversely, choosing a representa-
tion for a learner is tantamount to 
choosing the set of classifiers that it 
can possibly learn. This set is called 
the hypothesis space of the learner. 
If a classifier is not in the hypothesis 
space, it cannot be learned. A related 
question, that I address later, is how 
to represent the input, in other words, 
what features to use.

 ˲ Evaluation. An evaluation func-
tion (also called objective function 

or scoring function) is needed to dis-
tinguish good classifiers from bad 
ones. The evaluation function used 
internally by the algorithm may dif-
fer from the external one that we want 
the classifier to optimize, for ease of 
optimization and due to the issues I 
will discuss.

 ˲ Optimization. Finally, we need 
a method to search among the clas-
sifiers in the language for the high-
est-scoring one. The choice of op-
timization technique is key to the 
efficiency of the learner, and also 
helps determine the classifier pro-
duced if the evaluation function has 
more than one optimum. It is com-
mon for new learners to start out using 
off-the-shelf optimizers, which are lat-
er replaced by custom-designed ones.

The accompanying table shows 
common examples of each of these 
three components. For example, k-
nearest neighbor classifies a test ex-
ample by finding the k most similar 
training examples and predicting the 
majority class among them. Hyper-
plane-based methods form a linear I
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combination of the features per class 
and predict the class with the high-
est-valued combination. Decision 
trees test one feature at each internal 
node, with one branch for each fea-
ture value, and have class predictions 
at the leaves. Algorithm 1 (above) 
shows a bare-bones decision tree 
learner for Boolean domains, using 
information gain and greedy search.20 
InfoGain(xj, y) is the mutual informa-
tion between feature xj and the class y. 
MakeNode(x,c0,c1) returns a node that 
tests feature x and has c0 as the child 
for x = 0 and c1 as the child for x = 1.

Of course, not all combinations of 
one component from each column of 
the table make equal sense. For exam-
ple, discrete representations naturally 
go with combinatorial optimization, 
and continuous ones with continu-
ous optimization. Nevertheless, many 
learners have both discrete and con-
tinuous components, and in fact the 

day may not be far when every single 
possible combination has appeared in 
some learner!

Most textbooks are organized by 
representation, and it is easy to over-
look the fact that the other compo-
nents are equally important. There is 
no simple recipe for choosing each 
component, but I will touch on some 
of the key issues here. As we will see, 
some choices in a machine learning 
project may be even more important 
than the choice of learner.

it’s Generalization that counts
The fundamental goal of machine 
learning is to generalize beyond the 
examples in the training set. This is 
because, no matter how much data 
we have, it is very unlikely that we will 
see those exact examples again at test 
time. (Notice that, if there are 100,000 
words in the dictionary, the spam fil-
ter described above has 2100,000 pos-

sible different inputs.) Doing well on 
the training set is easy (just memorize 
the examples). The most common 
mistake among machine learning be-
ginners is to test on the training data 
and have the illusion of success. If the 
chosen classifier is then tested on new 
data, it is often no better than ran-
dom guessing. So, if you hire someone 
to build a classifier, be sure to keep 
some of the data to yourself and test 
the classifier they give you on it. Con-
versely, if you have been hired to build 
a classifier, set some of the data aside 
from the beginning, and only use it to 
test your chosen classifier at the very 
end, followed by learning your final 
classifier on the whole data.

Contamination of your classifier by 
test data can occur in insidious ways, 
for example, if you use test data to 
tune parameters and do a lot of tun-
ing. (Machine learning algorithms 
have lots of knobs, and success of-
ten comes from twiddling them a lot, 
so this is a real concern.) Of course, 
holding out data reduces the amount 
available for training. This can be mit-
igated by doing cross-validation: ran-
domly dividing your training data into 
(say) 10 subsets, holding out each one 
while training on the rest, testing each 
learned classifier on the examples it 
did not see, and averaging the results 
to see how well the particular param-
eter setting does.

In the early days of machine learn-
ing, the need to keep training and test 
data separate was not widely appreci-
ated. This was partly because, if the 
learner has a very limited representa-
tion (for example, hyperplanes), the 
difference between training and test 
error may not be large. But with very 
flexible classifiers (for example, deci-
sion trees), or even with linear classifi-
ers with a lot of features, strict separa-
tion is mandatory.

Notice that generalization being 
the goal has an interesting conse-
quence for machine learning. Unlike 
in most other optimization problems, 
we do not have access to the function 
we want to optimize! We have to use 
training error as a surrogate for test 
error, and this is fraught with dan-
ger. (How to deal with it is addressed 
later.) On the positive side, since the 
objective function is only a proxy for 
the true goal, we may not need to fully 

table 1. the three components of learning algorithms.

Representation evaluation optimization

Instances Accuracy/error rate combinatorial optimization

   K-nearest neighbor Precision and recall    Greedy search

   Support vector machines Squared error    beam search

Hyperplanes likelihood    branch-and-bound

   naive bayes Posterior probability continuous optimization

   logistic regression Information gain    Unconstrained

Decision trees K-l divergence       Gradient descent

Sets of rules cost/Utility       conjugate gradient

   Propositional rules Margin       Quasi-newton methods

   logic programs    constrained

neural networks       linear programming

Graphical models       Quadratic programming

   bayesian networks

   conditional random fields

algorithm 1. Decision tree induction.

LearnDt (TrainSet) 

if all examples in TrainSet have the same class y* then 

return Makeleaf(y*)

if no feature xj has InfoGain(xj ,y) > 0 then 

y* ← Most frequent class in TrainSet  

return Makeleaf(y*)

x* ← argmaxxj InfoGain(xj, y)

TS0 ← examples in TrainSet with x* = 0

TS1 ← examples in TrainSet with x* = 1

return Makenode(x*, learnDt(TS0), learnDt(TS1))
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optimize it; in fact, a local optimum 
returned by simple greedy search may 
be better than the global optimum.

Data alone is not enough
Generalization being the goal has an-
other major consequence: Data alone 
is not enough, no matter how much 
of it you have. Consider learning a 
Boolean function of (say) 100 vari-
ables from a million examples. There 
are 2100 − 106 examples whose classes 
you do not know. How do you figure 
out what those classes are? In the ab-
sence of further information, there is 
just no way to do this that beats flip-
ping a coin. This observation was first 
made (in somewhat different form) by 
the philosopher David Hume over 200 
years ago, but even today many mis-
takes in machine learning stem from 
failing to appreciate it. Every learner 
must embody some knowledge or as-
sumptions beyond the data it is given 
in order to generalize beyond it. This 
notion was formalized by Wolpert in 
his famous “no free lunch” theorems, 
according to which no learner can 
beat random guessing over all pos-
sible functions to be learned.25

This seems like rather depressing 
news. How then can we ever hope to 
learn anything? Luckily, the functions 
we want to learn in the real world are 
not drawn uniformly from the set of all 
mathematically possible functions! In 
fact, very general assumptions—like 
smoothness, similar examples hav-
ing similar classes, limited depen-
dences, or limited complexity—are 
often enough to do very well, and this 
is a large part of why machine learn-
ing has been so successful. Like de-
duction, induction (what learners do) 
is a knowledge lever: it turns a small 
amount of input knowledge into a 
large amount of output knowledge. 
Induction is a vastly more powerful 
lever than deduction, requiring much 
less input knowledge to produce use-
ful results, but it still needs more than 
zero input knowledge to work. And, as 
with any lever, the more we put in, the 
more we can get out.

A corollary of this is that one of the 
key criteria for choosing a representa-
tion is which kinds of knowledge are 
easily expressed in it. For example, if 
we have a lot of knowledge about what 
makes examples similar in our do-

main, instance-based methods may 
be a good choice. If we have knowl-
edge about probabilistic dependen-
cies, graphical models are a good fit. 
And if we have knowledge about what 
kinds of preconditions are required by 
each class, “IF . . . THEN . . .” rules may 
be the best option. The most useful 
learners in this regard are those that 
do not just have assumptions hard-
wired into them, but allow us to state 
them explicitly, vary them widely, and 
incorporate them automatically into 
the learning (for example, using first-
order logic21 or grammars6).

In retrospect, the need for knowl-
edge in learning should not be sur-
prising. Machine learning is not 
magic; it cannot get something from 
nothing. What it does is get more 
from less. Programming, like all en-
gineering, is a lot of work: we have to 
build everything from scratch. Learn-
ing is more like farming, which lets 
nature do most of the work. Farmers 
combine seeds with nutrients to grow 
crops. Learners combine knowledge 
with data to grow programs.

overfitting has many faces
What if the knowledge and data we 
have are not sufficient to completely 
determine the correct classifier? Then 
we run the risk of just hallucinating 
a classifier (or parts of it) that is not 
grounded in reality, and is simply en-
coding random quirks in the data. 
This problem is called overfitting, and 
is the bugbear of machine learning. 
When your learner outputs a classi-
fier that is 100% accurate on the train-
ing data but only 50% accurate on test 
data, when in fact it could have output 

one that is 75% accurate on both, it 
has overfit.

Everyone in machine learning 
knows about overfitting, but it comes 
in many forms that are not immedi-
ately obvious. One way to understand 
overfitting is by decomposing gener-
alization error into bias and variance.9 
Bias is a learner’s tendency to con-
sistently learn the same wrong thing. 
Variance is the tendency to learn ran-
dom things irrespective of the real sig-
nal. Figure 1 illustrates this by an anal-
ogy with throwing darts at a board. A 
linear learner has high bias, because 
when the frontier between two classes 
is not a hyperplane the learner is un-
able to induce it. Decision trees do not 
have this problem because they can 
represent any Boolean function, but 
on the other hand they can suffer from 
high variance: decision trees learned 
on different training sets generated by 
the same phenomenon are often very 
different, when in fact they should be 
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the same. Similar reasoning applies 
to the choice of optimization meth-
od: beam search has lower bias than 
greedy search, but higher variance, be-
cause it tries more hypotheses. Thus, 
contrary to intuition, a more powerful 
learner is not necessarily better than a 
less powerful one.

Figure 2 illustrates this.a Even 
though the true classifier is a set of 
rules, with up to 1,000 examples na-
ive Bayes is more accurate than a 
rule learner. This happens despite 
naive Bayes’s false assumption that 
the frontier is linear! Situations like 
this are common in machine learn-
ing: strong false assumptions can be 
better than weak true ones, because 
a learner with the latter needs more 
data to avoid overfitting.

Cross-validation can help to com-
bat overfitting, for example by using it 
to choose the best size of decision tree 
to learn. But it is no panacea, since if 
we use it to make too many parameter 
choices it can itself start to overfit.17

Besides cross-validation, there 
are many methods to combat overfit-
ting. The most popular one is adding 
a regularization term to the evaluation 
function. This can, for example, pe-
nalize classifiers with more structure, 
thereby favoring smaller ones with 
less room to overfit. Another option 
is to perform a statistical significance 
test like chi-square before adding new 
structure, to decide whether the dis-
tribution of the class really is differ-
ent with and without this structure. 
These techniques are particularly use-
ful when data is very scarce. Neverthe-
less, you should be skeptical of claims 
that a particular technique “solves” 
the overfitting problem. It is easy to 
avoid overfitting (variance) by falling 
into the opposite error of underfitting 
(bias). Simultaneously avoiding both 
requires learning a perfect classifier, 
and short of knowing it in advance 
there is no single technique that will 
always do best (no free lunch).

A common misconception about 
overfitting is that it is caused by noise, 

a Training examples consist of 64 Boolean fea-
tures and a Boolean class computed from 
them according to a set of “IF . . . THEN . . .” 
rules. The curves are the average of 100 runs 
with different randomly generated sets of 
rules. Error bars are two standard deviations. 
See Domingos and Pazzani10 for details.

like training examples labeled with 
the wrong class. This can indeed ag-
gravate overfitting, by making the 
learner draw a capricious frontier to 
keep those examples on what it thinks 
is the right side. But severe overfitting 
can occur even in the absence of noise. 
For instance, suppose we learn a Bool-
ean classifier that is just the disjunc-
tion of the examples labeled “true” 
in the training set. (In other words, 
the classifier is a Boolean formula in 
disjunctive normal form, where each 
term is the conjunction of the feature 
values of one specific training exam-
ple.) This classifier gets all the training 
examples right and every positive test 
example wrong, regardless of whether 
the training data is noisy or not.

The problem of multiple testing13 is 
closely related to overfitting. Standard 
statistical tests assume that only one 
hypothesis is being tested, but mod-
ern learners can easily test millions 
before they are done. As a result what 
looks significant may in fact not be. 
For example, a mutual fund that beats 
the market 10 years in a row looks very 
impressive, until you realize that, if 
there are 1,000 funds and each has a 
50% chance of beating the market on 
any given year, it is quite likely that 
one will succeed all 10 times just by 
luck. This problem can be combatted 
by correcting the significance tests to 
take the number of hypotheses into 
account, but this can also lead to un-
derfitting. A better approach is to con-
trol the fraction of falsely accepted 
non-null hypotheses, known as the 
false discovery rate.3

intuition Fails in high Dimensions
After overfitting, the biggest problem 
in machine learning is the curse of 
dimensionality. This expression was 
coined by Bellman in 1961 to refer 
to the fact that many algorithms that 
work fine in low dimensions become 
intractable when the input is high-
dimensional. But in machine learn-
ing it refers to much more. General-
izing correctly becomes exponentially 
harder as the dimensionality (number 
of features) of the examples grows, be-
cause a fixed-size training set covers a 
dwindling fraction of the input space. 
Even with a moderate dimension of 
100 and a huge training set of a trillion 
examples, the latter covers only a frac-

tion of about 10−18 of the input space. 
This is what makes machine learning 
both necessary and hard.

More seriously, the similarity-
based reasoning that machine learn-
ing algorithms depend on (explicitly 
or implicitly) breaks down in high di-
mensions. Consider a nearest neigh-
bor classifier with Hamming distance 
as the similarity measure, and sup-
pose the class is just x1 ∧ x2. If there 
are no other features, this is an easy 
problem. But if there are 98 irrelevant 
features x3,..., x100, the noise from 
them completely swamps the signal in 
x1 and x2, and nearest neighbor effec-
tively makes random predictions.

Even more disturbing is that near-
est neighbor still has a problem even 
if all 100 features are relevant! This 
is because in high dimensions all 
examples look alike. Suppose, for 
instance, that examples are laid out 
on a regular grid, and consider a test 
example xt. If the grid is d-dimen-
sional, xt’s 2d nearest examples are 
all at the same distance from it. So as 
the dimensionality increases, more 
and more examples become nearest 
neighbors of xt, until the choice of 
nearest neighbor (and therefore of 
class) is effectively random.

This is only one instance of a more 
general problem with high dimen-
sions: our intuitions, which come 
from a three-dimensional world, of-
ten do not apply in high-dimensional 
ones. In high dimensions, most of the 
mass of a multivariate Gaussian dis-
tribution is not near the mean, but in 
an increasingly distant “shell” around 
it; and most of the volume of a high-
dimensional orange is in the skin, not 
the pulp. If a constant number of ex-
amples is distributed uniformly in a 
high-dimensional hypercube, beyond 
some dimensionality most examples 
are closer to a face of the hypercube 
than to their nearest neighbor. And if 
we approximate a hypersphere by in-
scribing it in a hypercube, in high di-
mensions almost all the volume of the 
hypercube is outside the hypersphere. 
This is bad news for machine learning, 
where shapes of one type are often ap-
proximated by shapes of another.

Building a classifier in two or three 
dimensions is easy; we can find a rea-
sonable frontier between examples 
of different classes just by visual in-
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spection. (It has even been said that if 
people could see in high dimensions 
machine learning would not be neces-
sary.) But in high dimensions it is dif-
ficult to understand what is happen-
ing. This in turn makes it difficult to 
design a good classifier. Naively, one 
might think that gathering more fea-
tures never hurts, since at worst they 
provide no new information about the 
class. But in fact their benefits may 
be outweighed by the curse of dimen-
sionality.

Fortunately, there is an effect that 
partly counteracts the curse, which 
might be called the “blessing of non-
uniformity.” In most applications 
examples are not spread uniformly 
throughout the instance space, but 
are concentrated on or near a lower-
dimensional manifold. For example, 
k-nearest neighbor works quite well 
for handwritten digit recognition 
even though images of digits have 
one dimension per pixel, because the 
space of digit images is much smaller 
than the space of all possible images. 
Learners can implicitly take advan-
tage of this lower effective dimension, 
or algorithms for explicitly reducing 
the dimensionality can be used (for 
example, Tenenbaum22).

theoretical Guarantees  
are not What they seem
Machine learning papers are full of 
theoretical guarantees. The most com-
mon type is a bound on the number of 
examples needed to ensure good gen-
eralization. What should you make of 
these guarantees? First of all, it is re-
markable that they are even possible. 
Induction is traditionally contrasted 
with deduction: in deduction you can 
guarantee that the conclusions are 
correct; in induction all bets are off. 
Or such was the conventional wisdom 
for many centuries. One of the major 
developments of recent decades has 
been the realization that in fact we can 
have guarantees on the results of in-
duction, particularly if we are willing 
to settle for probabilistic guarantees.

The basic argument is remarkably 
simple.5 Let’s say a classifier is bad 
if its true error rate is greater than ε. 
Then the probability that a bad clas-
sifier is consistent with n random, in-
dependent training examples is less 
than (1 − ε)n. Let b be the number of 

bad classifiers in the learner’s hypoth-
esis space H. The probability that at 
least one of them is consistent is less 
than b(1 − ε)n, by the union bound. As-
suming the learner always returns a 
consistent classifier, the probability 
that this classifier is bad is then less 
than |H|(1 − ε)n, where we have used 
the fact that b ≤ |H|. So if we want this 
probability to be less than δ, it suffices 
to make n > ln(δ/|H|)/ ln(1 − ε) ≥ 1/ε (ln 
|H| + ln 1/δ).

Unfortunately, guarantees of this 
type have to be taken with a large grain 
of salt. This is because the bounds ob-
tained in this way are usually extreme-
ly loose. The wonderful feature of the 
bound above is that the required num-
ber of examples only grows logarith-
mically with |H| and 1/δ. Unfortunate-
ly, most interesting hypothesis spaces 
are doubly exponential in the number 
of features d, which still leaves us 
needing a number of examples expo-
nential in d. For example, consider 
the space of Boolean functions of d 
Boolean variables. If there are e pos-
sible different examples, there are 
2e possible different functions, so 
since there are 2d possible examples, 
the total number of functions is 22d. 
And even for hypothesis spaces that 
are “merely” exponential, the bound 
is still very loose, because the union 
bound is very pessimistic. For exam-
ple, if there are 100 Boolean features 
and the hypothesis space is decision 
trees with up to 10 levels, to guarantee 
δ = ε = 1% in the bound above we need 
half a million examples. But in prac-
tice a small fraction of this suffices for 
accurate learning.

Further, we have to be careful 
about what a bound like this means. 
For instance, it does not say that, if 
your learner returned a hypothesis 
consistent with a particular training 
set, then this hypothesis probably 
generalizes well. What it says is that, 
given a large enough training set, with 
high probability your learner will ei-
ther return a hypothesis that general-
izes well or be unable to find a consis-
tent hypothesis. The bound also says 
nothing about how to select a good 
hypothesis space. It only tells us that, 
if the hypothesis space contains the 
true classifier, then the probability 
that the learner outputs a bad classi-
fier decreases with training set size. 

one of the major 
developments of 
recent decades has 
been the realization 
that we can have 
guarantees on the 
results of induction, 
particularly if we 
are willing to settle 
for probabilistic 
guarantees.
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If we shrink the hypothesis space, the 
bound improves, but the chances that 
it contains the true classifier shrink 
also. (There are bounds for the case 
where the true classifier is not in the 
hypothesis space, but similar consid-
erations apply to them.)

Another common type of theoreti-
cal guarantee is asymptotic: given in-
finite data, the learner is guaranteed 
to output the correct classifier. This 
is reassuring, but it would be rash to 
choose one learner over another be-
cause of its asymptotic guarantees. In 
practice, we are seldom in the asymp-
totic regime (also known as “asymp-
topia”). And, because of the bias-vari-
ance trade-off I discussed earlier, if 
learner A is better than learner B given 
infinite data, B is often better than A 
given finite data.

The main role of theoretical guar-
antees in machine learning is not as 
a criterion for practical decisions, 
but as a source of understanding and 
driving force for algorithm design. In 
this capacity, they are quite useful; in-
deed, the close interplay of theory and 
practice is one of the main reasons 
machine learning has made so much 
progress over the years. But caveat 
emptor: learning is a complex phe-
nomenon, and just because a learner 
has a theoretical justification and 
works in practice does not mean the 
former is the reason for the latter.

feature engineering is the Key
At the end of the day, some machine 
learning projects succeed and some 
fail. What makes the difference? Eas-
ily the most important factor is the 
features used. Learning is easy if you 
have many independent features that 
each correlate well with the class. On 
the other hand, if the class is a very 
complex function of the features, you 
may not be able to learn it. Often, the 
raw data is not in a form that is ame-
nable to learning, but you can con-
struct features from it that are. This 
is typically where most of the effort in 
a machine learning project goes. It is 
often also one of the most interesting 
parts, where intuition, creativity and 
“black art” are as important as the 
technical stuff.

First-timers are often surprised by 
how little time in a machine learning 
project is spent actually doing ma-

a dumb algorithm 
with lots and lots  
of data beats  
a clever one  
with modest 
amounts of it.

chine learning. But it makes sense if 
you consider how time-consuming it 
is to gather data, integrate it, clean it 
and preprocess it, and how much trial 
and error can go into feature design. 
Also, machine learning is not a one-
shot process of building a dataset and 
running a learner, but rather an itera-
tive process of running the learner, 
analyzing the results, modifying the 
data and/or the learner, and repeat-
ing. Learning is often the quickest 
part of this, but that is because we 
have already mastered it pretty well! 
Feature engineering is more diffi-
cult because it is domain-specific, 
while learners can be largely general 
purpose. However, there is no sharp 
frontier between the two, and this is 
another reason the most useful learn-
ers are those that facilitate incorpo-
rating knowledge.

Of course, one of the holy grails 
of machine learning is to automate 
more and more of the feature engi-
neering process. One way this is often 
done today is by automatically gener-
ating large numbers of candidate fea-
tures and selecting the best by (say) 
their information gain with respect 
to the class. But bear in mind that 
features that look irrelevant in isola-
tion may be relevant in combination. 
For example, if the class is an XOR of 
k input features, each of them by it-
self carries no information about the 
class. (If you want to annoy machine 
learners, bring up XOR.) On the other 
hand, running a learner with a very 
large number of features to find out 
which ones are useful in combination 
may be too time-consuming, or cause 
overfitting. So there is ultimately no 
replacement for the smarts you put 
into feature engineering.

more Data Beats  
a cleverer algorithm
Suppose you have constructed the 
best set of features you can, but the 
classifiers you receive are still not ac-
curate enough. What can you do now? 
There are two main choices: design a 
better learning algorithm, or gather 
more data (more examples, and pos-
sibly more raw features, subject to 
the curse of dimensionality). Machine 
learning researchers are mainly con-
cerned with the former, but pragmati-
cally the quickest path to success is 
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ers are seductive, but they are usually 
harder to use, because they have more 
knobs you need to turn to get good re-
sults, and because their internals are 
more opaque.

Learners can be divided into two 
major types: those whose representa-
tion has a fixed size, like linear classi-
fiers, and those whose representation 
can grow with the data, like decision 
trees. (The latter are sometimes called 
nonparametric learners, but this is 
somewhat unfortunate, since they 
usually wind up learning many more 
parameters than parametric ones.) 
Fixed-size learners can only take ad-
vantage of so much data. (Notice how 
the accuracy of naive Bayes asymptotes 
at around 70% in Figure 2.) Variable-
size learners can in principle learn any 
function given sufficient data, but in 
practice they may not, because of limi-
tations of the algorithm (for example, 
greedy search falls into local optima) 
or computational cost. Also, because 
of the curse of dimensionality, no ex-
isting amount of data may be enough. 
For these reasons, clever algorithms—
those that make the most of the data 
and computing resources available—
often pay off in the end, provided you 
are willing to put in the effort. There 
is no sharp frontier between design-
ing learners and learning classifiers; 
rather, any given piece of knowledge 
could be encoded in the learner or 
learned from data. So machine learn-
ing projects often wind up having a 
significant component of learner de-
sign, and practitioners need to have 
some expertise in it.12

In the end, the biggest bottleneck 
is not data or CPU cycles, but human 

often to just get more data. As a rule 
of thumb, a dumb algorithm with lots 
and lots of data beats a clever one with 
modest amounts of it. (After all, ma-
chine learning is all about letting data 
do the heavy lifting.)

This does bring up another prob-
lem, however: scalability. In most of 
computer science, the two main lim-
ited resources are time and memory. 
In machine learning, there is a third 
one: training data. Which one is the 
bottleneck has changed from decade 
to decade. In the 1980s it tended to 
be data. Today it is often time. Enor-
mous mountains of data are avail-
able, but there is not enough time 
to process it, so it goes unused. This 
leads to a paradox: even though in 
principle more data means that more 
complex classifiers can be learned, in 
practice simpler classifiers wind up 
being used, because complex ones 
take too long to learn. Part of the an-
swer is to come up with fast ways to 
learn complex classifiers, and indeed 
there has been remarkable progress 
in this direction (for example, Hulten 
and Domingos11).

Part of the reason using cleverer 
algorithms has a smaller payoff than 
you might expect is that, to a first ap-
proximation, they all do the same. 
This is surprising when you consider 
representations as different as, say, 
sets of rules and neural networks. But 
in fact propositional rules are readily 
encoded as neural networks, and sim-
ilar relationships hold between other 
representations. All learners essen-
tially work by grouping nearby exam-
ples into the same class; the key dif-
ference is in the meaning of “nearby.” 
With nonuniformly distributed data, 
learners can produce widely different 
frontiers while still making the same 
predictions in the regions that matter 
(those with a substantial number of 
training examples, and therefore also 
where most test examples are likely to 
appear). This also helps explain why 
powerful learners can be unstable but 
still accurate. Figure 3 illustrates this 
in 2D; the effect is much stronger in 
high dimensions.

As a rule, it pays to try the simplest 
learners first (for example, naïve Bayes 
before logistic regression, k-nearest 
neighbor before support vector ma-
chines). More sophisticated learn-

cycles. In research papers, learners 
are typically compared on measures 
of accuracy and computational cost. 
But human effort saved and insight 
gained, although harder to measure, 
are often more important. This favors 
learners that produce human-under-
standable output (for example, rule 
sets). And the organizations that make 
the most of machine learning are 
those that have in place an infrastruc-
ture that makes experimenting with 
many different learners, data sources, 
and learning problems easy and effi-
cient, and where there is a close col-
laboration between machine learning 
experts and application domain ones.

Learn many models, not Just one
In the early days of machine learn-
ing, everyone had a favorite learner, 
together with some a priori reasons 
to believe in its superiority. Most ef-
fort went into trying many variations 
of it and selecting the best one. Then 
systematic empirical comparisons 
showed that the best learner varies 
from application to application, and 
systems containing many different 
learners started to appear. Effort now 
went into trying many variations of 
many learners, and still selecting just 
the best one. But then researchers 
noticed that, if instead of selecting 
the best variation found, we combine 
many variations, the results are bet-
ter—often much better—and at little 
extra effort for the user.

Creating such model ensembles is 
now standard.1 In the simplest tech-
nique, called bagging, we simply gen-
erate random variations of the train-
ing set by resampling, learn a classifier 
on each, and combine the results by 
voting. This works because it greatly 
reduces variance while only slightly 
increasing bias. In boosting, training 
examples have weights, and these are 
varied so that each new classifier fo-
cuses on the examples the previous 
ones tended to get wrong. In stacking, 
the outputs of individual classifiers 
become the inputs of a “higher-level” 
learner that figures out how best to 
combine them.

Many other techniques exist, and 
the trend is toward larger and larger 
ensembles. In the Netflix prize, teams 
from all over the world competed to 
build the best video recommender 

Figure 3. very different frontiers can yield 
similar predictions.  (+ and – are training 
examples of two classes.)
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continues to improve by adding clas-
sifiers even after the training error has 
reached zero. Another counterexam-
ple is support vector machines, which 
can effectively have an infinite num-
ber of parameters without overfitting. 
Conversely, the function sign(sin(ax)) 
can discriminate an arbitrarily large, 
arbitrarily labeled set of points on the 
x axis, even though it has only one pa-
rameter.23 Thus, contrary to intuition, 
there is no necessary connection be-
tween the number of parameters of a 
model and its tendency to overfit.

A more sophisticated view instead 
equates complexity with the size of 
the hypothesis space, on the basis that 
smaller spaces allow hypotheses to be 
represented by shorter codes. Bounds 
like the one in the section on theoreti-
cal guarantees might then be viewed 
as implying that shorter hypotheses 
generalize better. This can be further 
refined by assigning shorter codes to 
the hypotheses in the space we have 
some a priori preference for. But 
viewing this as “proof” of a trade-off 
between accuracy and simplicity is 
circular reasoning: we made the hy-
potheses we prefer simpler by design, 
and if they are accurate it is because 
our preferences are accurate, not be-
cause the hypotheses are “simple” in 
the representation we chose.

A further complication arises from 
the fact that few learners search their 
hypothesis space exhaustively. A 
learner with a larger hypothesis space 
that tries fewer hypotheses from it 
is less likely to overfit than one that 
tries more hypotheses from a smaller 
space. As Pearl18 points out, the size of 
the hypothesis space is only a rough 
guide to what really matters for relat-
ing training and test error: the proce-
dure by which a hypothesis is chosen.

Domingos7 surveys the main argu-
ments and evidence on the issue of 
Occam’s razor in machine learning. 
The conclusion is that simpler hy-
potheses should be preferred because 
simplicity is a virtue in its own right, 
not because of a hypothetical connec-
tion with accuracy. This is probably 
what Occam meant in the first place.

Representable Does not 
imply Learnable
Essentially all representations used in 
variable-size learners have associated 

Just because  
a function can  
be represented  
does not mean  
it can be learned.

system (http://netflixprize.com). As 
the competition progressed, teams 
found they obtained the best results 
by combining their learners with oth-
er teams’, and merged into larger and 
larger teams. The winner and runner-
up were both stacked ensembles of 
over 100 learners, and combining the 
two ensembles further improved the 
results. Doubtless we will see even 
larger ones in the future.

Model ensembles should not be 
confused with Bayesian model av-
eraging (BMA)—the theoretically 
optimal approach to learning.4 In 
BMA, predictions on new examples 
are made by averaging the individual 
predictions of all classifiers in the 
hypothesis space, weighted by how 
well the classifiers explain the train-
ing data and how much we believe 
in them a priori. Despite their su-
perficial similarities, ensembles and 
BMA are very different. Ensembles 
change the hypothesis space (for ex-
ample, from single decision trees to 
linear combinations of them), and 
can take a wide variety of forms. BMA 
assigns weights to the hypotheses in 
the original space according to a fixed 
formula. BMA weights are extremely 
different from those produced by 
(say) bagging or boosting: the latter 
are fairly even, while the former are 
extremely skewed, to the point where 
the single highest-weight classifier 
usually dominates, making BMA ef-
fectively equivalent to just selecting 
it.8 A practical consequence of this is 
that, while model ensembles are a key 
part of the machine learning toolkit, 
BMA is seldom worth the trouble.

Simplicity Does not 
imply Accuracy
Occam’s razor famously states that 
entities should not be multiplied be-
yond necessity. In machine learning, 
this is often taken to mean that, given 
two classifiers with the same training 
error, the simpler of the two will likely 
have the lowest test error. Purported 
proofs of this claim appear regularly 
in the literature, but in fact there are 
many counterexamples to it, and the 
“no free lunch” theorems imply it can-
not be true.

We saw one counterexample previ-
ously: model ensembles. The gener-
alization error of a boosted ensemble 



review articles

oCTobeR 2012  |   VoL.  55  |   no.  10  |   CommuniCAtionS oF thE ACm     87

More often than not, the goal 
of learning predictive models is to 
use them as guides to action. If we 
find that beer and diapers are often 
bought together at the supermar-
ket, then perhaps putting beer next 
to the diaper section will increase 
sales. (This is a famous example in 
the world of data mining.) But short 
of actually doing the experiment it is 
difficult to tell. Machine learning is 
usually applied to observational data, 
where the predictive variables are not 
under the control of the learner, as 
opposed to experimental data, where 
they are. Some learning algorithms 
can potentially extract causal infor-
mation from observational data, but 
their applicability is rather restrict-
ed.19 On the other hand, correlation 
is a sign of a potential causal connec-
tion, and we can use it as a guide to 
further investigation (for example, 
trying to understand what the causal 
chain might be).

Many researchers believe that cau-
sality is only a convenient fiction. For 
example, there is no notion of causal-
ity in physical laws. Whether or not 
causality really exists is a deep philo-
sophical question with no definitive 
answer in sight, but there are two 
practical points for machine learn-
ers. First, whether or not we call them 
“causal,” we would like to predict the 
effects of our actions, not just corre-
lations between observable variables. 
Second, if you can obtain experimen-
tal data (for example by randomly as-
signing visitors to different versions of 
a Web site), then by all means do so.14

Conclusion
Like any discipline, machine learn-
ing has a lot of “folk wisdom” that can 
be difficult to come by, but is crucial 
for success. This article summarized 
some of the most salient items. Of 
course, it is only a complement to the 
more conventional study of machine 
learning. Check out http://www.
cs.washington.edu/homes/pedrod/
class for a complete online machine 
learning course that combines formal 
and informal aspects. There is also a 
treasure trove of machine learning 
lectures at http://www.videolectures.
net. A good open source machine 
learning toolkit is Weka.24 

Happy learning! 
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theorems of the form “Every function 
can be represented, or approximated 
arbitrarily closely, using this repre-
sentation.” Reassured by this, fans of 
the representation often proceed to 
ignore all others. However, just be-
cause a function can be represented 
does not mean it can be learned. For 
example, standard decision tree learn-
ers cannot learn trees with more leaves 
than there are training examples. In 
continuous spaces, representing even 
simple functions using a fixed set of 
primitives often requires an infinite 
number of components. Further, if 
the hypothesis space has many local 
optima of the evaluation function, as 
is often the case, the learner may not 
find the true function even if it is rep-
resentable. Given finite data, time and 
memory, standard learners can learn 
only a tiny subset of all possible func-
tions, and these subsets are different 
for learners with different represen-
tations. Therefore the key question is 
not “Can it be represented?” to which 
the answer is often trivial, but “Can it 
be learned?” And it pays to try different 
learners (and possibly combine them).

Some representations are exponen-
tially more compact than others for 
some functions. As a result, they may 
also require exponentially less data to 
learn those functions. Many learners 
work by forming linear combinations 
of simple basis functions. For exam-
ple, support vector machines form 
combinations of kernels centered at 
some of the training examples (the 
support vectors). Representing parity 
of n bits in this way requires 2n basis 
functions. But using a representation 
with more layers (that is, more steps 
between input and output), parity can 
be encoded in a linear-size classifier. 
Finding methods to learn these deeper 
representations is one of the major re-
search frontiers in machine learning.2

Correlation Does not 
imply Causation
The point that correlation does not 
imply causation is made so often that 
it is perhaps not worth belaboring. 
But, even though learners of the kind 
we have been discussing can only 
learn correlations, their results are 
often treated as representing causal 
relations. Isn’t this wrong? If so, then 
why do people do it?


