
78 communications of the acm | october 2012 | vol. 55 | no. 10

review articles

Machine learning systeMs automatically learn
programs from data. This is often a very attractive
alternative to manually constructing them, and in the
last decade the use of machine learning has spread
rapidly throughout computer science and beyond.
Machine learning is used in Web search, spam filters,
recommender systems, ad placement, credit scoring,
fraud detection, stock trading, drug design, and many
other applications. A recent report from the McKinsey
Global Institute asserts that machine learning (a.k.a.
data mining or predictive analytics) will be the driver
of the next big wave of innovation.15 Several fine
textbooks are available to interested practitioners and
researchers (for example, Mitchell16 and Witten et
al.24). However, much of the “folk knowledge” that

is needed to successfully develop
machine learning applications is not
readily available in them. As a result,
many machine learning projects take
much longer than necessary or wind
up producing less-than-ideal results.
Yet much of this folk knowledge is
fairly easy to communicate. This is
the purpose of this article.

doi:10.1145/2347736.2347755

Tapping into the “folk knowledge” needed to
advance machine learning applications.

by Pedro domingos

a few useful
things to
Know about
machine
Learning

 key insights

 machine learning algorithms can figure
out how to perform important tasks
by generalizing from examples. this is
often feasible and cost-effective where
manual programming is not. as more
data becomes available, more ambitious
problems can be tackled.

 machine learning is widely used in
computer science and other fields.
however, developing successful
machine learning applications requires a
substantial amount of “black art” that is
difficult to find in textbooks.

 this article summarizes 12 key lessons
that machine learning researchers and
practitioners have learned. these include
pitfalls to avoid, important issues to focus
on, and answers to common questions.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2347736.2347755&domain=pdf&date_stamp=2012-10-01

oCTobeR 2012 | VoL. 55 | no. 10 | CommuniCAtionS oF thE ACm 79

Many different types of machine
learning exist, but for illustration
purposes I will focus on the most
mature and widely used one: clas-
sification. Nevertheless, the issues I
will discuss apply across all of ma-
chine learning. A classifier is a sys-
tem that inputs (typically) a vector
of discrete and/or continuous fea-
ture values and outputs a single dis-
crete value, the class. For example,
a spam filter classifies email mes-
sages into “spam” or “not spam,”
and its input may be a Boolean vec-
tor x = (x1,…,xj,…,xd), where xj = 1 if
the jth word in the dictionary appears
in the email and xj = 0 otherwise. A
learner inputs a training set of ex-
amples (xi, yi), where xi = (xi,1

 , . . . ,
xi,d) is an observed input and yi is the
corresponding output, and outputs
a classifier. The test of the learner is
whether this classifier produces the
correct output yt for future examples
xt (for example, whether the spam
filter correctly classifies previously
unseen email messages as spam or
not spam).

Learning = Representation +
Evaluation + optimization
Suppose you have an application that
you think machine learning might be
good for. The first problem facing you
is the bewildering variety of learning al-
gorithms available. Which one to use?
There are literally thousands available,
and hundreds more are published each
year. The key to not getting lost in this
huge space is to realize that it consists
of combinations of just three compo-
nents. The components are:

 ˲ Representation. A classifier must
be represented in some formal lan-
guage that the computer can handle.
Conversely, choosing a representa-
tion for a learner is tantamount to
choosing the set of classifiers that it
can possibly learn. This set is called
the hypothesis space of the learner.
If a classifier is not in the hypothesis
space, it cannot be learned. A related
question, that I address later, is how
to represent the input, in other words,
what features to use.

 ˲ Evaluation. An evaluation func-
tion (also called objective function

or scoring function) is needed to dis-
tinguish good classifiers from bad
ones. The evaluation function used
internally by the algorithm may dif-
fer from the external one that we want
the classifier to optimize, for ease of
optimization and due to the issues I
will discuss.

 ˲ Optimization. Finally, we need
a method to search among the clas-
sifiers in the language for the high-
est-scoring one. The choice of op-
timization technique is key to the
efficiency of the learner, and also
helps determine the classifier pro-
duced if the evaluation function has
more than one optimum. It is com-
mon for new learners to start out using
off-the-shelf optimizers, which are lat-
er replaced by custom-designed ones.

The accompanying table shows
common examples of each of these
three components. For example, k-
nearest neighbor classifies a test ex-
ample by finding the k most similar
training examples and predicting the
majority class among them. Hyper-
plane-based methods form a linear I

M
a

g
e

 b
y

 a
g

s
a

n
d

r
e

W
/s

h
u

t
t

e
r

s
t

o
C

k
.C

o
M

80 communications of the acm | october 2012 | vol. 55 | no. 10

review articles

combination of the features per class
and predict the class with the high-
est-valued combination. Decision
trees test one feature at each internal
node, with one branch for each fea-
ture value, and have class predictions
at the leaves. Algorithm 1 (above)
shows a bare-bones decision tree
learner for Boolean domains, using
information gain and greedy search.20
InfoGain(xj, y) is the mutual informa-
tion between feature xj and the class y.
MakeNode(x,c0,c1) returns a node that
tests feature x and has c0 as the child
for x = 0 and c1 as the child for x = 1.

Of course, not all combinations of
one component from each column of
the table make equal sense. For exam-
ple, discrete representations naturally
go with combinatorial optimization,
and continuous ones with continu-
ous optimization. Nevertheless, many
learners have both discrete and con-
tinuous components, and in fact the

day may not be far when every single
possible combination has appeared in
some learner!

Most textbooks are organized by
representation, and it is easy to over-
look the fact that the other compo-
nents are equally important. There is
no simple recipe for choosing each
component, but I will touch on some
of the key issues here. As we will see,
some choices in a machine learning
project may be even more important
than the choice of learner.

it’s Generalization that counts
The fundamental goal of machine
learning is to generalize beyond the
examples in the training set. This is
because, no matter how much data
we have, it is very unlikely that we will
see those exact examples again at test
time. (Notice that, if there are 100,000
words in the dictionary, the spam fil-
ter described above has 2100,000 pos-

sible different inputs.) Doing well on
the training set is easy (just memorize
the examples). The most common
mistake among machine learning be-
ginners is to test on the training data
and have the illusion of success. If the
chosen classifier is then tested on new
data, it is often no better than ran-
dom guessing. So, if you hire someone
to build a classifier, be sure to keep
some of the data to yourself and test
the classifier they give you on it. Con-
versely, if you have been hired to build
a classifier, set some of the data aside
from the beginning, and only use it to
test your chosen classifier at the very
end, followed by learning your final
classifier on the whole data.

Contamination of your classifier by
test data can occur in insidious ways,
for example, if you use test data to
tune parameters and do a lot of tun-
ing. (Machine learning algorithms
have lots of knobs, and success of-
ten comes from twiddling them a lot,
so this is a real concern.) Of course,
holding out data reduces the amount
available for training. This can be mit-
igated by doing cross-validation: ran-
domly dividing your training data into
(say) 10 subsets, holding out each one
while training on the rest, testing each
learned classifier on the examples it
did not see, and averaging the results
to see how well the particular param-
eter setting does.

In the early days of machine learn-
ing, the need to keep training and test
data separate was not widely appreci-
ated. This was partly because, if the
learner has a very limited representa-
tion (for example, hyperplanes), the
difference between training and test
error may not be large. But with very
flexible classifiers (for example, deci-
sion trees), or even with linear classifi-
ers with a lot of features, strict separa-
tion is mandatory.

Notice that generalization being
the goal has an interesting conse-
quence for machine learning. Unlike
in most other optimization problems,
we do not have access to the function
we want to optimize! We have to use
training error as a surrogate for test
error, and this is fraught with dan-
ger. (How to deal with it is addressed
later.) On the positive side, since the
objective function is only a proxy for
the true goal, we may not need to fully

table 1. the three components of learning algorithms.

Representation evaluation optimization

Instances Accuracy/error rate combinatorial optimization

 K-nearest neighbor Precision and recall Greedy search

 Support vector machines Squared error beam search

Hyperplanes likelihood branch-and-bound

 naive bayes Posterior probability continuous optimization

 logistic regression Information gain Unconstrained

Decision trees K-l divergence Gradient descent

Sets of rules cost/Utility conjugate gradient

 Propositional rules Margin Quasi-newton methods

 logic programs constrained

neural networks linear programming

Graphical models Quadratic programming

 bayesian networks

 conditional random fields

algorithm 1. Decision tree induction.

LearnDt (TrainSet)

if all examples in TrainSet have the same class y* then

return Makeleaf(y*)

if no feature xj has InfoGain(xj ,y) > 0 then

y* ← Most frequent class in TrainSet

return Makeleaf(y*)

x* ← argmaxxj InfoGain(xj, y)

TS0 ← examples in TrainSet with x* = 0

TS1 ← examples in TrainSet with x* = 1

return Makenode(x*, learnDt(TS0), learnDt(TS1))

review articles

october 2012 | vol. 55 | no. 10 | communications of the acm 81

optimize it; in fact, a local optimum
returned by simple greedy search may
be better than the global optimum.

Data alone is not enough
Generalization being the goal has an-
other major consequence: Data alone
is not enough, no matter how much
of it you have. Consider learning a
Boolean function of (say) 100 vari-
ables from a million examples. There
are 2100 − 106 examples whose classes
you do not know. How do you figure
out what those classes are? In the ab-
sence of further information, there is
just no way to do this that beats flip-
ping a coin. This observation was first
made (in somewhat different form) by
the philosopher David Hume over 200
years ago, but even today many mis-
takes in machine learning stem from
failing to appreciate it. Every learner
must embody some knowledge or as-
sumptions beyond the data it is given
in order to generalize beyond it. This
notion was formalized by Wolpert in
his famous “no free lunch” theorems,
according to which no learner can
beat random guessing over all pos-
sible functions to be learned.25

This seems like rather depressing
news. How then can we ever hope to
learn anything? Luckily, the functions
we want to learn in the real world are
not drawn uniformly from the set of all
mathematically possible functions! In
fact, very general assumptions—like
smoothness, similar examples hav-
ing similar classes, limited depen-
dences, or limited complexity—are
often enough to do very well, and this
is a large part of why machine learn-
ing has been so successful. Like de-
duction, induction (what learners do)
is a knowledge lever: it turns a small
amount of input knowledge into a
large amount of output knowledge.
Induction is a vastly more powerful
lever than deduction, requiring much
less input knowledge to produce use-
ful results, but it still needs more than
zero input knowledge to work. And, as
with any lever, the more we put in, the
more we can get out.

A corollary of this is that one of the
key criteria for choosing a representa-
tion is which kinds of knowledge are
easily expressed in it. For example, if
we have a lot of knowledge about what
makes examples similar in our do-

main, instance-based methods may
be a good choice. If we have knowl-
edge about probabilistic dependen-
cies, graphical models are a good fit.
And if we have knowledge about what
kinds of preconditions are required by
each class, “IF . . . THEN . . .” rules may
be the best option. The most useful
learners in this regard are those that
do not just have assumptions hard-
wired into them, but allow us to state
them explicitly, vary them widely, and
incorporate them automatically into
the learning (for example, using first-
order logic21 or grammars6).

In retrospect, the need for knowl-
edge in learning should not be sur-
prising. Machine learning is not
magic; it cannot get something from
nothing. What it does is get more
from less. Programming, like all en-
gineering, is a lot of work: we have to
build everything from scratch. Learn-
ing is more like farming, which lets
nature do most of the work. Farmers
combine seeds with nutrients to grow
crops. Learners combine knowledge
with data to grow programs.

overfitting has many faces
What if the knowledge and data we
have are not sufficient to completely
determine the correct classifier? Then
we run the risk of just hallucinating
a classifier (or parts of it) that is not
grounded in reality, and is simply en-
coding random quirks in the data.
This problem is called overfitting, and
is the bugbear of machine learning.
When your learner outputs a classi-
fier that is 100% accurate on the train-
ing data but only 50% accurate on test
data, when in fact it could have output

one that is 75% accurate on both, it
has overfit.

Everyone in machine learning
knows about overfitting, but it comes
in many forms that are not immedi-
ately obvious. One way to understand
overfitting is by decomposing gener-
alization error into bias and variance.9
Bias is a learner’s tendency to con-
sistently learn the same wrong thing.
Variance is the tendency to learn ran-
dom things irrespective of the real sig-
nal. Figure 1 illustrates this by an anal-
ogy with throwing darts at a board. A
linear learner has high bias, because
when the frontier between two classes
is not a hyperplane the learner is un-
able to induce it. Decision trees do not
have this problem because they can
represent any Boolean function, but
on the other hand they can suffer from
high variance: decision trees learned
on different training sets generated by
the same phenomenon are often very
different, when in fact they should be

80

75

70

65

60

55

50

10 100

number of examples

te
st

-s
et

 a
cc

u
ra

cy
 (

%
)

1000 10000

figure 2. naïve Bayes can outperform a state-of-the-art rule learner (c4.5rules) even
when the true classifier is a set of rules.

 Bayes C4.5

figure 1. Bias and variance in
dart-throwing.

low
variance

High
variance

low
bias

High
bias

82 CommuniCAtionS oF thE ACm | oCTobeR 2012 | VoL. 55 | no. 10

review articles

the same. Similar reasoning applies
to the choice of optimization meth-
od: beam search has lower bias than
greedy search, but higher variance, be-
cause it tries more hypotheses. Thus,
contrary to intuition, a more powerful
learner is not necessarily better than a
less powerful one.

Figure 2 illustrates this.a Even
though the true classifier is a set of
rules, with up to 1,000 examples na-
ive Bayes is more accurate than a
rule learner. This happens despite
naive Bayes’s false assumption that
the frontier is linear! Situations like
this are common in machine learn-
ing: strong false assumptions can be
better than weak true ones, because
a learner with the latter needs more
data to avoid overfitting.

Cross-validation can help to com-
bat overfitting, for example by using it
to choose the best size of decision tree
to learn. But it is no panacea, since if
we use it to make too many parameter
choices it can itself start to overfit.17

Besides cross-validation, there
are many methods to combat overfit-
ting. The most popular one is adding
a regularization term to the evaluation
function. This can, for example, pe-
nalize classifiers with more structure,
thereby favoring smaller ones with
less room to overfit. Another option
is to perform a statistical significance
test like chi-square before adding new
structure, to decide whether the dis-
tribution of the class really is differ-
ent with and without this structure.
These techniques are particularly use-
ful when data is very scarce. Neverthe-
less, you should be skeptical of claims
that a particular technique “solves”
the overfitting problem. It is easy to
avoid overfitting (variance) by falling
into the opposite error of underfitting
(bias). Simultaneously avoiding both
requires learning a perfect classifier,
and short of knowing it in advance
there is no single technique that will
always do best (no free lunch).

A common misconception about
overfitting is that it is caused by noise,

a Training examples consist of 64 Boolean fea-
tures and a Boolean class computed from
them according to a set of “IF . . . THEN . . .”
rules. The curves are the average of 100 runs
with different randomly generated sets of
rules. Error bars are two standard deviations.
See Domingos and Pazzani10 for details.

like training examples labeled with
the wrong class. This can indeed ag-
gravate overfitting, by making the
learner draw a capricious frontier to
keep those examples on what it thinks
is the right side. But severe overfitting
can occur even in the absence of noise.
For instance, suppose we learn a Bool-
ean classifier that is just the disjunc-
tion of the examples labeled “true”
in the training set. (In other words,
the classifier is a Boolean formula in
disjunctive normal form, where each
term is the conjunction of the feature
values of one specific training exam-
ple.) This classifier gets all the training
examples right and every positive test
example wrong, regardless of whether
the training data is noisy or not.

The problem of multiple testing13 is
closely related to overfitting. Standard
statistical tests assume that only one
hypothesis is being tested, but mod-
ern learners can easily test millions
before they are done. As a result what
looks significant may in fact not be.
For example, a mutual fund that beats
the market 10 years in a row looks very
impressive, until you realize that, if
there are 1,000 funds and each has a
50% chance of beating the market on
any given year, it is quite likely that
one will succeed all 10 times just by
luck. This problem can be combatted
by correcting the significance tests to
take the number of hypotheses into
account, but this can also lead to un-
derfitting. A better approach is to con-
trol the fraction of falsely accepted
non-null hypotheses, known as the
false discovery rate.3

intuition Fails in high Dimensions
After overfitting, the biggest problem
in machine learning is the curse of
dimensionality. This expression was
coined by Bellman in 1961 to refer
to the fact that many algorithms that
work fine in low dimensions become
intractable when the input is high-
dimensional. But in machine learn-
ing it refers to much more. General-
izing correctly becomes exponentially
harder as the dimensionality (number
of features) of the examples grows, be-
cause a fixed-size training set covers a
dwindling fraction of the input space.
Even with a moderate dimension of
100 and a huge training set of a trillion
examples, the latter covers only a frac-

tion of about 10−18 of the input space.
This is what makes machine learning
both necessary and hard.

More seriously, the similarity-
based reasoning that machine learn-
ing algorithms depend on (explicitly
or implicitly) breaks down in high di-
mensions. Consider a nearest neigh-
bor classifier with Hamming distance
as the similarity measure, and sup-
pose the class is just x1 ∧ x2. If there
are no other features, this is an easy
problem. But if there are 98 irrelevant
features x3,..., x100, the noise from
them completely swamps the signal in
x1 and x2, and nearest neighbor effec-
tively makes random predictions.

Even more disturbing is that near-
est neighbor still has a problem even
if all 100 features are relevant! This
is because in high dimensions all
examples look alike. Suppose, for
instance, that examples are laid out
on a regular grid, and consider a test
example xt. If the grid is d-dimen-
sional, xt’s 2d nearest examples are
all at the same distance from it. So as
the dimensionality increases, more
and more examples become nearest
neighbors of xt, until the choice of
nearest neighbor (and therefore of
class) is effectively random.

This is only one instance of a more
general problem with high dimen-
sions: our intuitions, which come
from a three-dimensional world, of-
ten do not apply in high-dimensional
ones. In high dimensions, most of the
mass of a multivariate Gaussian dis-
tribution is not near the mean, but in
an increasingly distant “shell” around
it; and most of the volume of a high-
dimensional orange is in the skin, not
the pulp. If a constant number of ex-
amples is distributed uniformly in a
high-dimensional hypercube, beyond
some dimensionality most examples
are closer to a face of the hypercube
than to their nearest neighbor. And if
we approximate a hypersphere by in-
scribing it in a hypercube, in high di-
mensions almost all the volume of the
hypercube is outside the hypersphere.
This is bad news for machine learning,
where shapes of one type are often ap-
proximated by shapes of another.

Building a classifier in two or three
dimensions is easy; we can find a rea-
sonable frontier between examples
of different classes just by visual in-

review articles

october 2012 | vol. 55 | no. 10 | communications of the acm 83

spection. (It has even been said that if
people could see in high dimensions
machine learning would not be neces-
sary.) But in high dimensions it is dif-
ficult to understand what is happen-
ing. This in turn makes it difficult to
design a good classifier. Naively, one
might think that gathering more fea-
tures never hurts, since at worst they
provide no new information about the
class. But in fact their benefits may
be outweighed by the curse of dimen-
sionality.

Fortunately, there is an effect that
partly counteracts the curse, which
might be called the “blessing of non-
uniformity.” In most applications
examples are not spread uniformly
throughout the instance space, but
are concentrated on or near a lower-
dimensional manifold. For example,
k-nearest neighbor works quite well
for handwritten digit recognition
even though images of digits have
one dimension per pixel, because the
space of digit images is much smaller
than the space of all possible images.
Learners can implicitly take advan-
tage of this lower effective dimension,
or algorithms for explicitly reducing
the dimensionality can be used (for
example, Tenenbaum22).

theoretical Guarantees
are not What they seem
Machine learning papers are full of
theoretical guarantees. The most com-
mon type is a bound on the number of
examples needed to ensure good gen-
eralization. What should you make of
these guarantees? First of all, it is re-
markable that they are even possible.
Induction is traditionally contrasted
with deduction: in deduction you can
guarantee that the conclusions are
correct; in induction all bets are off.
Or such was the conventional wisdom
for many centuries. One of the major
developments of recent decades has
been the realization that in fact we can
have guarantees on the results of in-
duction, particularly if we are willing
to settle for probabilistic guarantees.

The basic argument is remarkably
simple.5 Let’s say a classifier is bad
if its true error rate is greater than ε.
Then the probability that a bad clas-
sifier is consistent with n random, in-
dependent training examples is less
than (1 − ε)n. Let b be the number of

bad classifiers in the learner’s hypoth-
esis space H. The probability that at
least one of them is consistent is less
than b(1 − ε)n, by the union bound. As-
suming the learner always returns a
consistent classifier, the probability
that this classifier is bad is then less
than |H|(1 − ε)n, where we have used
the fact that b ≤ |H|. So if we want this
probability to be less than δ, it suffices
to make n > ln(δ/|H|)/ ln(1 − ε) ≥ 1/ε (ln
|H| + ln 1/δ).

Unfortunately, guarantees of this
type have to be taken with a large grain
of salt. This is because the bounds ob-
tained in this way are usually extreme-
ly loose. The wonderful feature of the
bound above is that the required num-
ber of examples only grows logarith-
mically with |H| and 1/δ. Unfortunate-
ly, most interesting hypothesis spaces
are doubly exponential in the number
of features d, which still leaves us
needing a number of examples expo-
nential in d. For example, consider
the space of Boolean functions of d
Boolean variables. If there are e pos-
sible different examples, there are
2e possible different functions, so
since there are 2d possible examples,
the total number of functions is 22d.
And even for hypothesis spaces that
are “merely” exponential, the bound
is still very loose, because the union
bound is very pessimistic. For exam-
ple, if there are 100 Boolean features
and the hypothesis space is decision
trees with up to 10 levels, to guarantee
δ = ε = 1% in the bound above we need
half a million examples. But in prac-
tice a small fraction of this suffices for
accurate learning.

Further, we have to be careful
about what a bound like this means.
For instance, it does not say that, if
your learner returned a hypothesis
consistent with a particular training
set, then this hypothesis probably
generalizes well. What it says is that,
given a large enough training set, with
high probability your learner will ei-
ther return a hypothesis that general-
izes well or be unable to find a consis-
tent hypothesis. The bound also says
nothing about how to select a good
hypothesis space. It only tells us that,
if the hypothesis space contains the
true classifier, then the probability
that the learner outputs a bad classi-
fier decreases with training set size.

one of the major
developments of
recent decades has
been the realization
that we can have
guarantees on the
results of induction,
particularly if we
are willing to settle
for probabilistic
guarantees.

84 communications of the acm | october 2012 | vol. 55 | no. 10

review articles

If we shrink the hypothesis space, the
bound improves, but the chances that
it contains the true classifier shrink
also. (There are bounds for the case
where the true classifier is not in the
hypothesis space, but similar consid-
erations apply to them.)

Another common type of theoreti-
cal guarantee is asymptotic: given in-
finite data, the learner is guaranteed
to output the correct classifier. This
is reassuring, but it would be rash to
choose one learner over another be-
cause of its asymptotic guarantees. In
practice, we are seldom in the asymp-
totic regime (also known as “asymp-
topia”). And, because of the bias-vari-
ance trade-off I discussed earlier, if
learner A is better than learner B given
infinite data, B is often better than A
given finite data.

The main role of theoretical guar-
antees in machine learning is not as
a criterion for practical decisions,
but as a source of understanding and
driving force for algorithm design. In
this capacity, they are quite useful; in-
deed, the close interplay of theory and
practice is one of the main reasons
machine learning has made so much
progress over the years. But caveat
emptor: learning is a complex phe-
nomenon, and just because a learner
has a theoretical justification and
works in practice does not mean the
former is the reason for the latter.

feature engineering is the Key
At the end of the day, some machine
learning projects succeed and some
fail. What makes the difference? Eas-
ily the most important factor is the
features used. Learning is easy if you
have many independent features that
each correlate well with the class. On
the other hand, if the class is a very
complex function of the features, you
may not be able to learn it. Often, the
raw data is not in a form that is ame-
nable to learning, but you can con-
struct features from it that are. This
is typically where most of the effort in
a machine learning project goes. It is
often also one of the most interesting
parts, where intuition, creativity and
“black art” are as important as the
technical stuff.

First-timers are often surprised by
how little time in a machine learning
project is spent actually doing ma-

a dumb algorithm
with lots and lots
of data beats
a clever one
with modest
amounts of it.

chine learning. But it makes sense if
you consider how time-consuming it
is to gather data, integrate it, clean it
and preprocess it, and how much trial
and error can go into feature design.
Also, machine learning is not a one-
shot process of building a dataset and
running a learner, but rather an itera-
tive process of running the learner,
analyzing the results, modifying the
data and/or the learner, and repeat-
ing. Learning is often the quickest
part of this, but that is because we
have already mastered it pretty well!
Feature engineering is more diffi-
cult because it is domain-specific,
while learners can be largely general
purpose. However, there is no sharp
frontier between the two, and this is
another reason the most useful learn-
ers are those that facilitate incorpo-
rating knowledge.

Of course, one of the holy grails
of machine learning is to automate
more and more of the feature engi-
neering process. One way this is often
done today is by automatically gener-
ating large numbers of candidate fea-
tures and selecting the best by (say)
their information gain with respect
to the class. But bear in mind that
features that look irrelevant in isola-
tion may be relevant in combination.
For example, if the class is an XOR of
k input features, each of them by it-
self carries no information about the
class. (If you want to annoy machine
learners, bring up XOR.) On the other
hand, running a learner with a very
large number of features to find out
which ones are useful in combination
may be too time-consuming, or cause
overfitting. So there is ultimately no
replacement for the smarts you put
into feature engineering.

more Data Beats
a cleverer algorithm
Suppose you have constructed the
best set of features you can, but the
classifiers you receive are still not ac-
curate enough. What can you do now?
There are two main choices: design a
better learning algorithm, or gather
more data (more examples, and pos-
sibly more raw features, subject to
the curse of dimensionality). Machine
learning researchers are mainly con-
cerned with the former, but pragmati-
cally the quickest path to success is

review articles

oCTobeR 2012 | VoL. 55 | no. 10 | CommuniCAtionS oF thE ACm 85

ers are seductive, but they are usually
harder to use, because they have more
knobs you need to turn to get good re-
sults, and because their internals are
more opaque.

Learners can be divided into two
major types: those whose representa-
tion has a fixed size, like linear classi-
fiers, and those whose representation
can grow with the data, like decision
trees. (The latter are sometimes called
nonparametric learners, but this is
somewhat unfortunate, since they
usually wind up learning many more
parameters than parametric ones.)
Fixed-size learners can only take ad-
vantage of so much data. (Notice how
the accuracy of naive Bayes asymptotes
at around 70% in Figure 2.) Variable-
size learners can in principle learn any
function given sufficient data, but in
practice they may not, because of limi-
tations of the algorithm (for example,
greedy search falls into local optima)
or computational cost. Also, because
of the curse of dimensionality, no ex-
isting amount of data may be enough.
For these reasons, clever algorithms—
those that make the most of the data
and computing resources available—
often pay off in the end, provided you
are willing to put in the effort. There
is no sharp frontier between design-
ing learners and learning classifiers;
rather, any given piece of knowledge
could be encoded in the learner or
learned from data. So machine learn-
ing projects often wind up having a
significant component of learner de-
sign, and practitioners need to have
some expertise in it.12

In the end, the biggest bottleneck
is not data or CPU cycles, but human

often to just get more data. As a rule
of thumb, a dumb algorithm with lots
and lots of data beats a clever one with
modest amounts of it. (After all, ma-
chine learning is all about letting data
do the heavy lifting.)

This does bring up another prob-
lem, however: scalability. In most of
computer science, the two main lim-
ited resources are time and memory.
In machine learning, there is a third
one: training data. Which one is the
bottleneck has changed from decade
to decade. In the 1980s it tended to
be data. Today it is often time. Enor-
mous mountains of data are avail-
able, but there is not enough time
to process it, so it goes unused. This
leads to a paradox: even though in
principle more data means that more
complex classifiers can be learned, in
practice simpler classifiers wind up
being used, because complex ones
take too long to learn. Part of the an-
swer is to come up with fast ways to
learn complex classifiers, and indeed
there has been remarkable progress
in this direction (for example, Hulten
and Domingos11).

Part of the reason using cleverer
algorithms has a smaller payoff than
you might expect is that, to a first ap-
proximation, they all do the same.
This is surprising when you consider
representations as different as, say,
sets of rules and neural networks. But
in fact propositional rules are readily
encoded as neural networks, and sim-
ilar relationships hold between other
representations. All learners essen-
tially work by grouping nearby exam-
ples into the same class; the key dif-
ference is in the meaning of “nearby.”
With nonuniformly distributed data,
learners can produce widely different
frontiers while still making the same
predictions in the regions that matter
(those with a substantial number of
training examples, and therefore also
where most test examples are likely to
appear). This also helps explain why
powerful learners can be unstable but
still accurate. Figure 3 illustrates this
in 2D; the effect is much stronger in
high dimensions.

As a rule, it pays to try the simplest
learners first (for example, naïve Bayes
before logistic regression, k-nearest
neighbor before support vector ma-
chines). More sophisticated learn-

cycles. In research papers, learners
are typically compared on measures
of accuracy and computational cost.
But human effort saved and insight
gained, although harder to measure,
are often more important. This favors
learners that produce human-under-
standable output (for example, rule
sets). And the organizations that make
the most of machine learning are
those that have in place an infrastruc-
ture that makes experimenting with
many different learners, data sources,
and learning problems easy and effi-
cient, and where there is a close col-
laboration between machine learning
experts and application domain ones.

Learn many models, not Just one
In the early days of machine learn-
ing, everyone had a favorite learner,
together with some a priori reasons
to believe in its superiority. Most ef-
fort went into trying many variations
of it and selecting the best one. Then
systematic empirical comparisons
showed that the best learner varies
from application to application, and
systems containing many different
learners started to appear. Effort now
went into trying many variations of
many learners, and still selecting just
the best one. But then researchers
noticed that, if instead of selecting
the best variation found, we combine
many variations, the results are bet-
ter—often much better—and at little
extra effort for the user.

Creating such model ensembles is
now standard.1 In the simplest tech-
nique, called bagging, we simply gen-
erate random variations of the train-
ing set by resampling, learn a classifier
on each, and combine the results by
voting. This works because it greatly
reduces variance while only slightly
increasing bias. In boosting, training
examples have weights, and these are
varied so that each new classifier fo-
cuses on the examples the previous
ones tended to get wrong. In stacking,
the outputs of individual classifiers
become the inputs of a “higher-level”
learner that figures out how best to
combine them.

Many other techniques exist, and
the trend is toward larger and larger
ensembles. In the Netflix prize, teams
from all over the world competed to
build the best video recommender

Figure 3. very different frontiers can yield
similar predictions. (+ and – are training
examples of two classes.)

n. bayes

knn
SVM

D. Tree

86 CommuniCAtionS oF thE ACm | oCTobeR 2012 | VoL. 55 | no. 10

review articles

continues to improve by adding clas-
sifiers even after the training error has
reached zero. Another counterexam-
ple is support vector machines, which
can effectively have an infinite num-
ber of parameters without overfitting.
Conversely, the function sign(sin(ax))
can discriminate an arbitrarily large,
arbitrarily labeled set of points on the
x axis, even though it has only one pa-
rameter.23 Thus, contrary to intuition,
there is no necessary connection be-
tween the number of parameters of a
model and its tendency to overfit.

A more sophisticated view instead
equates complexity with the size of
the hypothesis space, on the basis that
smaller spaces allow hypotheses to be
represented by shorter codes. Bounds
like the one in the section on theoreti-
cal guarantees might then be viewed
as implying that shorter hypotheses
generalize better. This can be further
refined by assigning shorter codes to
the hypotheses in the space we have
some a priori preference for. But
viewing this as “proof” of a trade-off
between accuracy and simplicity is
circular reasoning: we made the hy-
potheses we prefer simpler by design,
and if they are accurate it is because
our preferences are accurate, not be-
cause the hypotheses are “simple” in
the representation we chose.

A further complication arises from
the fact that few learners search their
hypothesis space exhaustively. A
learner with a larger hypothesis space
that tries fewer hypotheses from it
is less likely to overfit than one that
tries more hypotheses from a smaller
space. As Pearl18 points out, the size of
the hypothesis space is only a rough
guide to what really matters for relat-
ing training and test error: the proce-
dure by which a hypothesis is chosen.

Domingos7 surveys the main argu-
ments and evidence on the issue of
Occam’s razor in machine learning.
The conclusion is that simpler hy-
potheses should be preferred because
simplicity is a virtue in its own right,
not because of a hypothetical connec-
tion with accuracy. This is probably
what Occam meant in the first place.

Representable Does not
imply Learnable
Essentially all representations used in
variable-size learners have associated

Just because
a function can
be represented
does not mean
it can be learned.

system (http://netflixprize.com). As
the competition progressed, teams
found they obtained the best results
by combining their learners with oth-
er teams’, and merged into larger and
larger teams. The winner and runner-
up were both stacked ensembles of
over 100 learners, and combining the
two ensembles further improved the
results. Doubtless we will see even
larger ones in the future.

Model ensembles should not be
confused with Bayesian model av-
eraging (BMA)—the theoretically
optimal approach to learning.4 In
BMA, predictions on new examples
are made by averaging the individual
predictions of all classifiers in the
hypothesis space, weighted by how
well the classifiers explain the train-
ing data and how much we believe
in them a priori. Despite their su-
perficial similarities, ensembles and
BMA are very different. Ensembles
change the hypothesis space (for ex-
ample, from single decision trees to
linear combinations of them), and
can take a wide variety of forms. BMA
assigns weights to the hypotheses in
the original space according to a fixed
formula. BMA weights are extremely
different from those produced by
(say) bagging or boosting: the latter
are fairly even, while the former are
extremely skewed, to the point where
the single highest-weight classifier
usually dominates, making BMA ef-
fectively equivalent to just selecting
it.8 A practical consequence of this is
that, while model ensembles are a key
part of the machine learning toolkit,
BMA is seldom worth the trouble.

Simplicity Does not
imply Accuracy
Occam’s razor famously states that
entities should not be multiplied be-
yond necessity. In machine learning,
this is often taken to mean that, given
two classifiers with the same training
error, the simpler of the two will likely
have the lowest test error. Purported
proofs of this claim appear regularly
in the literature, but in fact there are
many counterexamples to it, and the
“no free lunch” theorems imply it can-
not be true.

We saw one counterexample previ-
ously: model ensembles. The gener-
alization error of a boosted ensemble

review articles

oCTobeR 2012 | VoL. 55 | no. 10 | CommuniCAtionS oF thE ACm 87

More often than not, the goal
of learning predictive models is to
use them as guides to action. If we
find that beer and diapers are often
bought together at the supermar-
ket, then perhaps putting beer next
to the diaper section will increase
sales. (This is a famous example in
the world of data mining.) But short
of actually doing the experiment it is
difficult to tell. Machine learning is
usually applied to observational data,
where the predictive variables are not
under the control of the learner, as
opposed to experimental data, where
they are. Some learning algorithms
can potentially extract causal infor-
mation from observational data, but
their applicability is rather restrict-
ed.19 On the other hand, correlation
is a sign of a potential causal connec-
tion, and we can use it as a guide to
further investigation (for example,
trying to understand what the causal
chain might be).

Many researchers believe that cau-
sality is only a convenient fiction. For
example, there is no notion of causal-
ity in physical laws. Whether or not
causality really exists is a deep philo-
sophical question with no definitive
answer in sight, but there are two
practical points for machine learn-
ers. First, whether or not we call them
“causal,” we would like to predict the
effects of our actions, not just corre-
lations between observable variables.
Second, if you can obtain experimen-
tal data (for example by randomly as-
signing visitors to different versions of
a Web site), then by all means do so.14

Conclusion
Like any discipline, machine learn-
ing has a lot of “folk wisdom” that can
be difficult to come by, but is crucial
for success. This article summarized
some of the most salient items. Of
course, it is only a complement to the
more conventional study of machine
learning. Check out http://www.
cs.washington.edu/homes/pedrod/
class for a complete online machine
learning course that combines formal
and informal aspects. There is also a
treasure trove of machine learning
lectures at http://www.videolectures.
net. A good open source machine
learning toolkit is Weka.24

Happy learning!

References
1. bauer, e. and kohavi, r. an empirical comparison of

voting classification algorithms: bagging, boosting
and variants. Machine Learning 36 (1999), 105–142.

2. bengio, y. learning deep architectures for aI.
Foundations and Trends in Machine Learning 2, 1
(2009), 1–127.

3. benjamini, y. and hochberg, y. Controlling the false
discovery rate: a practical and powerful approach
to multiple testing. Journal of the Royal Statistical
Society, Series B, 57 (1995), 289–300.

4. bernardo, J.M. and smith, a.F.M. Bayesian Theory.
Wiley, ny, 1994.

5. blumer, a., ehrenfeucht, a., haussler, d. and
Warmuth, M.k. occam’s razor. Information
Processing Letters 24 (1987), 377–380.

6. Cohen, W.W. grammatically biased learning:
learning logic programs using an explicit antecedent
description language. Artificial Intelligence 68
(1994), 303–366.

7. domingos, P. the role of occam’s razor in knowledge
discovery. Data Mining and Knowledge Discovery 3
(1999), 409–425.

8. domingos, P. bayesian averaging of classifiers and
the overfitting problem. In Proceedings of the 17th
International Conference on Machine Learning
(stanford, Ca, 2000), Morgan kaufmann, san Mateo,
Ca, 223–230.

9. domingos, P. a unified bias-variance decomposition
and its applications. In Proceedings of the 17th
International Conference on Machine Learning
(stanford, Ca, 2000), Morgan kaufmann, san Mateo,
Ca, 231–238.

10. domingos, P. and Pazzani, M. on the optimality of
the simple bayesian classifier under zero-one loss.
Machine Learning 29 (1997), 103–130.

11. hulten, g. and domingos, P. Mining complex models
from arbitrarily large databases in constant time. In
Proceedings of the 8th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(edmonton, Canada, 2002). aCM Press, ny, 525–531.

12. kibler, d. and langley, P. Machine learning as an
experimental science. In Proceedings of the 3rd
European Working Session on Learning (london, uk,
1988). Pitman.

13. klockars, a.J. and sax, g. Multiple Comparisons.
sage, beverly hills, Ca, 1986.

14. kohavi, r., longbotham, r., sommerfield, d. and
henne, r. Controlled experiments on the Web:
survey and practical guide. Data Mining and
Knowledge Discovery 18 (2009), 140–181.

15. Manyika, J., Chui, M., brown, b., bughin, J., dobbs,
r., roxburgh, C. and byers, a. big data: the next
frontier for innovation, competition, and productivity.
technical report, Mckinsey global Institute, 2011.

16. Mitchell, t.M. Machine Learning. Mcgraw-hill,
ny, 1997.

17. ng, a.y. Preventing “overfitting” of cross-validation
data. In Proceedings of the 14th International
Conference on Machine Learning (nashville, tn,
1997). Morgan kaufmann, san Mateo, Ca, 245–253.

18. Pearl, J. on the connection between the complexity
and credibility of inferred models. International
Journal of General Systems 4 (1978), 255–264.

19. Pearl, J. Causality: Models, Reasoning, and
Inference. Cambridge university Press, Cambridge,
uk, 2000.

20. Quinlan, J.r. C4.5: Programs for Machine Learning.
Morgan kaufmann, san Mateo, Ca, 1993.

21. richardson, M. and P. domingos. Markov logic
networks. Machine Learning 62 (2006), 107–136.

22. tenenbaum, J., silva, V. and langford, J. a global
geometric framework for nonlinear dimensionality
reduction. Science 290 (2000), 2319–2323.

23. Vapnik, V.n. The Nature of Statistical Learning
Theory. springer, ny, 1995.

24. Witten, I., Frank, e. and hall, M. Data Mining:
Practical Machine Learning Tools and Techniques,
3rd Edition. Morgan kaufmann, san Mateo, Ca, 2011.

25. Wolpert, d. the lack of a priori distinctions between
learning algorithms. Neural Computation 8 (1996),
1341–1390.

Pedro Domingos (pedrod@cs.washington.edu) is a
professor in the department of Computer science and
engineering at the university of Washington, seattle.

© 2012 aCM 0001-0782/12/10 $15.00

theorems of the form “Every function
can be represented, or approximated
arbitrarily closely, using this repre-
sentation.” Reassured by this, fans of
the representation often proceed to
ignore all others. However, just be-
cause a function can be represented
does not mean it can be learned. For
example, standard decision tree learn-
ers cannot learn trees with more leaves
than there are training examples. In
continuous spaces, representing even
simple functions using a fixed set of
primitives often requires an infinite
number of components. Further, if
the hypothesis space has many local
optima of the evaluation function, as
is often the case, the learner may not
find the true function even if it is rep-
resentable. Given finite data, time and
memory, standard learners can learn
only a tiny subset of all possible func-
tions, and these subsets are different
for learners with different represen-
tations. Therefore the key question is
not “Can it be represented?” to which
the answer is often trivial, but “Can it
be learned?” And it pays to try different
learners (and possibly combine them).

Some representations are exponen-
tially more compact than others for
some functions. As a result, they may
also require exponentially less data to
learn those functions. Many learners
work by forming linear combinations
of simple basis functions. For exam-
ple, support vector machines form
combinations of kernels centered at
some of the training examples (the
support vectors). Representing parity
of n bits in this way requires 2n basis
functions. But using a representation
with more layers (that is, more steps
between input and output), parity can
be encoded in a linear-size classifier.
Finding methods to learn these deeper
representations is one of the major re-
search frontiers in machine learning.2

Correlation Does not
imply Causation
The point that correlation does not
imply causation is made so often that
it is perhaps not worth belaboring.
But, even though learners of the kind
we have been discussing can only
learn correlations, their results are
often treated as representing causal
relations. Isn’t this wrong? If so, then
why do people do it?

