
IV 
Before the Interview 

Acing an interview starts well before the interview itself-years before, in fact. The following timeline 
outlines what you should be thinking about when. 

If you're starting late into this process, don't worry. Do as much "catching up" as you can, and then focus on 
preparation. Good luck! 

� Getting the Right Experience 

Without a great resume, there's no interview. And without great experience, there's no great resume. There
fore, the first step in landing an interview is getting great experience. The further in advance you can think 
about this the better. 

For current students, this may mean the following: 

Take the Big Project Classes: Seek out the classes with big coding projects. This is a great way to get some
what practical experience before you have any formal work experience. The more relevant the project is 
to the real world, the better. 
Get an Internship: Do everything you can to land an internship early in school. It will pave the way for 
even better internships before you graduate. Many of the top tech companies have internship programs 
designed especially for freshman and sophomores. You can also look at startups, which might be more 
flexible. 

• Start Something: Build a project on your own time, participate in hackathons, or contribute to an open
source project. It doesn't matter too much what it is. The important thing is that you're coding. Not only
will this develop your technical skills and practical experience, your initiative will impress companies.

Professionals, on the other hand, may already have the right experience to switch to their dream company. 
For instance, a Google dev probably already has sufficient experience to switch to Facebook. However, if 
you're trying to move from a lesser-known company to one of the "biggies;' or from testing/IT into a dev 
role, the following advice will be useful: 

Shift Work Responsibilities More Towards Coding: Without revealing to your manager that you are thinking 
of leaving, you can discuss your eagerness to take on bigger coding challenges. As much as possible, 
try to ensure that these projects are "meaty;' use relevant technologies, and lend themselves well to a 
resume bullet or two. It is these coding projects that will, ideally, form the bulk of your resume. 

Use Your Nights and Weekends: If you have some free time, use it to build a mobile app, a web app, or a 
piece of desktop software. Doing such projects is also a great way to get experience with new technolo
gies, making you more relevant to today's companies. This project work should definitely be listed on 
your resume; few things are as impressive to an interviewer as a candidate who built something "just 

26 Cracking the Coding Interview, 6th Edition 



IV I Before the Interview 

for fun:· 

All of these boil down to the two big things that companies want to see: that you're smart and that you can 
code. If you can prove that, you can land your interview. 

In addition, you should think in advance about where you want your career to go. If you want to move into 
management down the road, even though you're currently looking for a dev position, you should find ways 
now of developing leadership experience. 

� Writing a Great Resume 

Resume screeners look for the same things that interviewers do. They want to know that you're smart and 
that you can code. 

That means you should prepare your resume to highlight those two things. Your love of tennis, traveling, or 
magic cards won't do much to show that. Think twice before cutting more technical lines in order to allow 
space for your non-technical hobbies. 

Appropriate Resume Length 

In the US, it is strongly advised to keep a resume to one page if you have less than ten years of experience. 
More experienced candidates can often justify 1.5 - 2 pages otherwise. 

Think twice about a long resume. Shorter resumes are often more impressive. 

Recruiters only spend a fixed amount of time (about 10 seconds) looking at your resume. If you limit 
the content to the most impressive items, the recruiter is sure to see them. Adding additional items just 
distracts the recruiter from what you'd really like them to see. 

Some people just flat-out refuse to read long resumes. Do you really want to risk having your resume 
tossed for this reason? 

If you are thinking right now that you have too much experience and can't fit it all on one or two pages, 
trust me, you can. Long resumes are not a reflection of having tons of experience; they're a reflection of not 
understanding how to prioritize content. 

Employment History 

Your resume does not-and should not-include a full history of every role you've ever had. Include only 
the relevant positions-the ones that make you a more impressive candidate. 

Writing Strong Bullets 

For each role, try to discuss your accomplishments with the following approach: "Accomplished X by imple
menting Y which led to z:· Here's an example: 

• "Reduced object rendering time by 75% by implementing distributed caching, leading to a 10% reduc
tion in log-in time:·

Here's another example with an alternate wording: 

• "Increased average match accuracy from 1.2 to 1.5 by implementing a new comparison algorithm based
on windiff:'

Not everything you did will fit into this approach, but the principle is the same: show what you did, how you 
did it, and what the results were. Ideally, you should try to make the results "measurable" somehow. 

CrackingTheCodinglnterview.com j 6th Edition 27 



IV I Before the Interview 

Projects 

Developing the projects section on your resume is often the best way to present yourself as more experi
enced. This is especially true for college students or recent grads. 

The projects should include your 2 - 4 most significant projects. State what the project was and which 
languages or technologies it employed. You may also want to consider including details such as whether 
the project was an individual or a team project, and whether it was completed for a course or indepen
dently. These details are not required, so only include them if they make you look better. Independent 
projects are generally preferred over course projects, as it shows initiative. 

Do not add too many projects. Many candidates make the mistake of adding all 13 of their prior projects, 
cluttering their resume with small, non-impressive projects. 

So what should you build? Honestly, it doesn't matter that much. Some employers really like open source 
projects (it offers experience contributing to a large code base), while others prefer independent projects 
(it's easier to understand your personal contributions). You could build a mobile app, a web app, or almost 
anything. The most important thing is that you're building something. 

Programming Languages and Software 

Software 

Be conservative about what software you list, and understand what's appropriate for the company. Soft
ware like Microsoft Office can almost always be cut. Technical software like Visual Studio and Eclipse is 
somewhat more relevant, but many of the top tech companies won't even care about that. After all, is it 
really that hard to learn Visual Studio? 

Of course, it won't hurt you to list all this software. It just takes up valuable space. You need to evaluate the 
trade-off of that. 

Languages 

Should you list everything you've ever worked with, or shorten the list to just the ones that you're most 
comfortable with? 

Listing everything you've ever worked with is dangerous. Many interviewers consider anything on your 
resume to be "fair game" as far as the interview. 

One alternative is to list most of the languages you've used, but add your experience level. This approach 
is shown below: 

Languages: Java (expert}, C ++ (proficient), JavaScript (prior experience). 

Use whatever wording ("expert'; "fluent'; etc.) effectively communicates your skillset. 

Some people list the number of years of experience they have with a particular language, but this can be 
really confusing. If you first learned Java 10 years ago, and have used it occasionally throughout that time, 
how many years of experience is this? 

For this reason, the number of years of experience is a poor metric for resumes. It's better to just describe 
what you mean in plain English. 

Advice for Non-Native English Speakers and Internationals 

Some companies will throw out your resume just because of a typo. Please get at least one native English 
speaker to proofread your resume. 

28 Cracking the Coding Interview, 6th Edition 



IV I Before the Interview 

Additionally, for US positions, do not include age, marital status, or nationality. This sort of personal informa
tion is not appreciated by companies, as it creates a legal liability for them. 

Beware of (Potential) Stigma 

Certain languages have stigmas associated with them. Sometimes this is because of the language them
selves, but often it's because of the places where this language is used. I'm not defending the stigma; I'm 
just letting you know of it. 

A few stigmas you should be aware of: 

Enterprise Languages: Certain languages have a stigma associated with them, and those are often the 
ones that are used for enterprise development. Visual Basic is a good example of this. If you show your
self to be an expert with VB, it can cause people to assume that you're less skilled. Many of these same 
people will admit that, yes, VB.NET is actually perfectly capable of building sophisticated applications. 
But still, the kinds of applications that people tend to build with it are not very sophisticated. You would 
be unlikely to see a big name Silicon Valley using VB. 

In fact, the same argument (although less strong) applies to the whole .NET platform. If your primary 
focus is .NET and you're not applying for .NET roles, you'll have to do more to show that you're strong 
technically than if you were coming in with a different background. 

Being Too Language Focused: When recruiters at some of the top tech companies see resumes that 
list every flavor of Java on their resume, they make negative assumptions about the caliber of candi
date. There is a belief in many circles that the best software engineers don't define themselves around 
a particular language. Thus, when they see a candidate seems to flaunt which specific versions of a 
language they know, recruiters will often bucket the candidate as "not our kind of person:' 

Note that this does not mean that you should necessarily take this "language flaunting" off your resume. 
You need to understand what that company values. Some companies do value this. 

• Certifications: Certifications for software engineers can be anything from a positive, to a neutral, to
a negative. This goes hand-in-hand with being too language focused; the companies that are biased
against candidates with a very lengthy list of technologies tend to also be biased against certifications.
This means that in some cases, you should actually remove this sort of experience from your resume.

Knowing Only One or Two Languages: The more time you've spent coding, the more things you've
built, the more languages you will have tended to work with. The assumption then, when they see a
resume with only one language, is that you haven't experienced very many problems. They also often
worry that candidates with only one or two languages will have trouble learning new technologies (why
hasn't the candidate learned more things?) or will just feel too tied with a specific technology (poten
tially not using the best language for the task).

This advice is here not just to help you work on your resume, but also to help you develop the right experi
ence. If your expertise is in C#.NET, try developing some projects in Python and JavaScript. If you only know 
one or two languages, build some applications in a different language. 

Where possible, try to truly diversify. The languages in the cluster of {Python, Ruby, and JavaScript} are 
somewhat similar to each other. It's better if you can learn languages that are more different, like Python, 
C++, and Java. 

CrackingTheCodinglnterview.com I 6th Edition 29 



IV I Before the Interview 

� Preparation Map 

The following map should give you an idea of how to tackle the interview preparation process. One of the 
key takeaways here is that it's not just about interview questions. Do projects and write code, too! 

Students: find intern
ship and take classes 
with large projects. 

• 
Professionals: focus 

work on "meaty" 
projects. 

Read intro sections 
of CtCI (Cracking the 
Codinq Interview). 

• 
Learn and master 

Big 0. 

Do several mock inter
views. 

• 
Continue to practice 
interview questions. 

Begin applying to 
companies. 

Build projects outside 
of school/work. 

Build website/ port-

Learn multiple 
programming 

Ian ua es . 

• 
.__ folio showcasing your ...__ Expand Network. 

experience . 

Make target list of 
preferred companies. 

Implement data struc-

Continue to work on 
_____. projects. Try to add on 

one more project . 

• 
Create draft of resume 

...__ and send it out for a 
resume review . 

_____. tures and algorithms _____. 
Form mock interview 
group with friends to 
interview each other . from scratch. 

Do mini-projects to 
...__ solidify understanding 

of ke conce ts . 

Create list to track 
-----. mistakes you've made -----. 

solving problems. 

Review/ update 
resume. 

• 

• 
Create interview prep 

grid (pg 32). 

t 

30 Cracking the Coding Interview, 6th Edition 



Re-read intro to CtCi, 
especially Tech & __.. 

Behavioral section. 

Do a final mock 
interview. 

• 
Rehearse stories 

from the interview __.. 
prep grid (pg 32). 

Rehearse each story 
from interview prep .._ 

grid once . 

• 
Continue to practice 
questions & review __.. 

your list of mistakes. 

Remember to talk out 
loud. Show how you .._ 

think . 

• 
Don't forget: Stum-

bling and struggling is __.. 
normal! 

Get an offer? Celebrate! 
Your hard work paid ..__ 

off! 

IV I Before the Interview 

Do another mock 
Continue to practice __.. questions, writing 

interview. code on paper. 

• 
Phone Interview: 

Locate headset and/or 
video camera . 

Re-read Algorithm __.. Re-read Big O section 
Approaches (pg 67). (pg 38). 

• 
.._ Continue to practice 

interview questions. 

Review Powers of 2 
table (pg 61 ). Print __.. 
for a phone screen. 

• 
Be Confident (Not Wake up in plenty of .._ time to eat a good Cocky!). breakfast & be on time. 

__.. Write Thank You note 
to recruiter. 

• 
If no offer, ask when If you haven't heard 

you can re-apply. Don't ..__ from recruiter, check in 
give up hope! after one week. 

CrackingTheCodinglnterview.com I 6th Edition 31 


