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Abstract—Neuroimaging studies generally provide evidence
only on a narrow aspects of the human brain function, suffering
from small sample sizes and are hard to reproduce. These
factors severely limit synthesis of neuroimaging findings and
our ability to reach a global view of human brain organi-
zation, mapping and decoding. In this paper, we present a
novel prediction based framework called Neuropredictome that
allows identification of statistically significant linkages between
phenotypes and neuroimaging features on UK-Biobank data.
We evaluate phenotype linkage to brain fMRI activity on 4926
variables pertaining to the health, physiology, psychology, social
and economic state for 19,831 subjects. We corroborate our
identified regions of the brain with previous work by providing
a novel quantitative evaluation of how well our results align
with existing meta-analyses of 14,371 published neuroimaging
research articles. Our analysis is presented as a public resource
at https://neuropredictome.com providing an interpretable view
of human brain organization and decoding, to assist in hypothesis
generation and evaluating future studies.

Index Terms—Neuroimaging, fMRI, natural language process-
ing.

I. INTRODUCTION

Each year, thousands of neuroimaging studies explore the
links between brain, behavior, and (primarily) psychiatric and
neurological disease. Individual studies however themselves,
suffer from small sample sizes and hence seldom have the
statistical power to establish fully trustworthy results [1], [2].
The median sample size of fMRI studies in 2015 was 28.5
subjects [3] and the 75th percentile of sample size in cognitive
neuroscience journals published between 2011 to 2014 was 28
subjects [4]. In neuroimaging, sample sizes are small due to
the financial cost of scans, which can exceed $1,200 USD
per data point. But working with such small sample sizes
yields low statistical power and an inflated false discovery
rate. As a consequence, neuroimaging has been criticized
for overestimating effect sizes [5] and concerns regarding
reproducibility [6].

Meta-analyses and literature reviews try to resolve this
problem by coalescing results from a wide number of studies.
Coordinate-Based Meta-Analysis (CBMA) methods [7], [8],
[9] assess the consistency of results across studies, comparing
the observed spatial density of reported brain stereotactic
coordinates to the null hypothesis of a uniform distribution.
The latest automated CBMA methods such as Neurosynth
[10] and Neuroquery [11] thus give excellent statistical power
while enabling large scale analyses of brain-imaging studies.

However, automated meta analyses frameworks come with
their own set of limitations.

In this paper, we set out to address these concerns using
a single large scale and public data set i.e. UK-Biobank to
study and predict 4926 variables for 19,831 subjects. For
each variable, we report our ability to decode it against naive
baseline and the regions of the brain that are most relevant
to that variable. Our results show highly significant results (at
the 0.01 level) for 623 (12.6%) of Biobank variables, with
another 1,046 (21.2%) variables significant at the 0.05 level,
all after Bonferroni correction. Predictable variables include
those associated with diet, substance use, fluid intelligence,
and mental health. Our methodology fails to find relationships
between measured fMRI activity and phenotypes such as bone
fractures, ethnicity, and birth month, confirming the rigour of
our statistical methods.

The model we construct for each BioBank phenotype iden-
tifies brain regions differentially active in positive subjects.
These models provide a way to link phenotypes to the neu-
roimaging literature through the Neurosynth database, which
collects brain map activation associated with over 14,371 peer-
reviewed published studies. Over all Neurosynth papers and
Uk-Biobank variables, the correlation between text similarity
and fMRI similarity is strongest for highly significant cate-
gories (r=0.25), mildly strong for significant variables(r=0.18)
and weak (r=0.09) for non-significant variables. This pro-
vides a quantitative evaluation of the brain activation maps
identified by our classifier (in terms of learned weights)
with existing activation maps and networks from published
meta-analyses frameworks. We present these linkages between
phenotype and the literature through fMRI activity at our
website https://neuropredictome.com, where we anticipate it
will prove a valuable resource to suggest connections between
brain activity and disease.

In addition to providing a public, consistent, interpretable
and reproducible global view of human brain organization and
decoding, we hope our work to assist in hypothesis generation
and providing data centric priors for grounding future studies.

The major contributions of this paper are as follows:
• A novel prediction-based framework for linking pheno-

types with fMRI data – We have discovered statistically-
rigorous linkages between over 600 cognitive, psychi-
atric, medical, and lifestyle factors and fMRI brain ac-
tivity. Many of these linkages are novel, but further
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Fig. 1: Schematic overview of NeuroPredictome. For each neuroimaging modality, brain features of 19,831 subjects, along
with age and sex, are used to train 4,926 classifiers, one for each binarized-phenotype, using 20-fold cross validation. Prediction
scores from each classifier is compared to that of a baseline classifier to measure statistical significance. Weights learned by
each classifier is used to generate an activation map for each phenotype that is then compared to activation maps reported in
Neurosynth papers. UK-Biobank phenotypes and Neurosynth papers are similarly compared using text features and we then
observe how well do similarities using text features align with similarities using brain features.

supported by literature-based evaluation.
The complete linkage data from this project is available
at https://neuropredictome.com as a resource to motivate
further research, providing strong baseline prediction
scores for future work.

• Evaluating the predictive power of different neuroimaging
modalities – The UK-Biobank contains subject data from
four distinct neuroimaging modalities including structural
(T1 and DTI) and functional (resting and task) imaging.
There remains considerable debate in the field as to the
relative power of these technologies for different tasks.
We use the statistically-significant brain-phenotype link-
ages identified by Neuropredictome to establish that rest-
ing state functional connectivity (rfMRI) broadly yields
the best prediction scores and predicts a larger number
of phenotypes compared to structural DTI, T1-weighted
or task fMRI.

• Evaluating data representations for neuroimaging – We
perform a systematic evaluation of four different feature
representations for fMRI data, employing the scale sup-
ported by our testbed enables use to make meaningful
evaluations. We show that the relatively simple Resting
State Functional Connectivity Networks (RSFCN) rep-
resentation coupled with Logistic Regression (LR) as a
classification model [12], [13] together exhibit predictive
power comparable to more sophisticated deep learning
representations and classifier – with substantially reduced
computational costs.

• Literature-based evaluation of neuroimaging-phenotypic
linkage – False positives through spurious correlations
plague large-scale association studies such as ours. We

have employed a novel literature-based evaluation to
assess these linkages, which is of independent interest.
We compare the brain maps implicit in our predictive
model for each phenotype with external brain maps from
the neuroscience literature. We demonstrate that the NLP
text similarity between phenotype name and study title
align surprisingly well with the statistical significance of
the phenotype-fMRI linkage.

This paper is organized as follows. Section II presents
the computational methodology behind Neuropredictome and
details the UK Biobank dataset it is trained and evaluated
on. Section III highlights the results of our analysis: both the
statistical significance of important phenotypes and general ob-
servations on fMRI data representations and literature linkage.
Our conclusions and proposals for future work are highlighted
in Section IV.

II. METHODOLOGY

Our general strategy, as shown in Figure 1, starts with
a large-scale hypothesis-neutral dataset to identify linkages
between brain and phenotypes, linkages that are then cross-
validated against meta-analyses from the neuroimaging liter-
ature. Each section to follow details individual component of
our pipeline.

A. Data

The UK Biobank [14] is a prospective epidemiological study
that recruited 500,000 adults between 2006-2010 [15]. Here,
we considered an initial release of around 19,831 subjects with
both structural MRI and functional MRI (both rest and task)
data as well as Diffusion Tensor Imaging. Participants ages

ii

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on February 28,2022 at 09:21:10 UTC from IEEE Xplore.  Restrictions apply. 



530

range from 40 to 69 years of age at baseline recruitment. In
addition to brain imaging data for these subjects, the study
also collects data from extensive questionnaires, physical and
cognitive measures, and biological samples (including geno-
typing). Following are details of the neuroimaging modalities
we used for our experiments:

• Resting State fMRI (rsfMRI) – Both structural MRI and
rs-fMRI were acquired on harmonized Siemens 3T Skyra
scanners at four UK Biobank imaging centres (Cheadle,
Manchester, Newcastle, and Reading). The structural
MRI was 1.0mm isotropic. The rs-fMRI was 2.4mm
isotropic with TR of 0.735s and 490 frames per run (6
min). Each subject had one rs-fMRI run.

• Task functional Magnetic Resonance Imaging (tfMRI) –
Task functional MRI uses the same measurement tech-
nique as resting-state fMRI, while the subject performs a
particular task or experiences a sensory stimulus. The task
used in UKBiobank is the Hariri faces/shapes “emotion”
task [16], [17]. The participants are presented with three
faces or three shapes in two rows and they had to
match the stimulus in the rows. The features from task
fMRI scans used for classification were also functional
connectivity weights, comparable to those computed for
resting state fMRI.

• Diffusion Tensor Imaging (DTI) – DTI measures the abil-
ity of water molecules to move within their local tissue
environment. Water diffusion is measured along a range
of orientations, providing two types of useful information:
i) Local voxel-wise estimates ii) Long-range estimates
based on tract-tracing. As features to our classifier, in our
experiments, we use for each tract, and for each output
image type, the weighted-mean value of the probabilistic
tractography output.

• Structural T1-weighted imaging – This structural tech-
nique gives a high-resolution depiction of brain anatomy,
having strong contrast between grey and white matter,
reflecting differences in the interaction of water with
surrounding tissue. This modality provides derived fields
primarily relating to volumes of brain tissues and struc-
tures. It is also critical for calculations of cross-subject
and cross-modality alignments, needed in order to process
all other brain modalities. The data available to us was
at the resolution of 1 mm isotropic.

B. Preprocessing Phenotypes

In this study, we restricted ourselves to the problem of
binary classification. Therefore, we binarize each of 5,034
phenotypes. To aid in interpretability, the positive class (dis-
ease group) is always the smaller of the two classes and the
negative class (control group) is always the majority class.
Without binarization, for certain phenotypes we would have to
carry out regression and for others classification. This would
have made the results harder to interpret. This binarization
step ensures consistency in reporting across prediction of all
phenotypes, nominal or ordinal.

Each nominal phenotype was converted into a variant of
type one vs. rest for each value it takes on. Additionally,
since not all phenotypes were available for all the subjects,
an available vs. not-available variant was also created. Each
of the ordinal phenotypes were binarized into 3 variants, one
with respect to the three quartiles: i) ≤ 25th quartile vs. rest ii)
≤50th quartile vs. rest and iii) ≤ 75th quartile vs. rest. Once
the binarized variants of all the phenotypes were computed,
variants that were available for at least 1000 subjects and
for which the minority class was at least one percent of all
the subjects were retained and the remaining were dropped.
Following these procedures, we finally ended up with 4926
phenotype variants.

C. Data Representations

We evaluate the performance of four distinct fMRI data
representations for predictive models:

• RSFCN – Resting State Functional Connectivity Network
(RSFCN) measures the congruity between different re-
gions of the brain while the participants are lying at
rest without any explicit task. Each entry of the RSFCN
matrix corresponds to the strength of the functional con-
nectivity between two brain regions, computed using the
full Pearson correlation coefficient of the corresponding
pair of time series. RSFC data of each participant was
summarized as an N×N matrix, where N is the number
of brain ROIs.The entries of the RSFCN matrix were
used as features to predict behavioral and demographic
measures in individual participants. For our experiments,
We use 55 ROIs obtained using spatial-ICA [18], [15],
[19] and removing artefacts [15].

• FNN – Fully-connected neural networks (FNNs) belong
to a generic class of feedforward neural networks [20]. An
FNN takes in vector data as an input and outputs a vector.
An FNN consists of several fully connected layers. In this
work, the inputs to the FNN are the vectorized RSFCN
(i.e., lower triangular entries of the RSFC matrices) and
the outputs are the behavioral or demographic variables
we seek to predict.

• BrainNetCNN – BrainNetCNN [21] is a specially de-
signed DNN for connectivity data. BrainNetCNN allows
the application of convolution to connectivity data, re-
sulting in significantly less trainable parameters than the
FNN. In this work, the input to the BrainNetCNN is
the RSFC matrix and the outputs are the behavioral or
demographic variables we seek to predict.

• GCNN – Standard convolution applies to data that lies
on a Euclidean grid. Graph convolution exploits the
graph Laplacian in order to generalize the concept of
standard convolution to data lying on nodes connected
together into a graph. This allows the extension of the
standard CNN to graph convolutional neural networks.
Here we considered the innovative GCNN developed by
Kipf and Welling [22] and extended to neuroimaging data
by Parisot and colleagues [23].

iii
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D. Identifying Statistically Significant Predictions

1) Confound modeling: Confounds can be significant in
addressing problems of unexplained variance and spurious cor-
relations. Alfaro et al. [24] describe a set of possible confounds
in UK-Biobank and show that imaging can be influenced by
blood pressure, bone density, height and weight. Age and
sex in particular are confirmed as one of the most important
confounds that mediate large amounts of between-subject
variance. Preliminary results of our experiments, in agreement
with existing literature [24], [25], [12], [13], showed that fMRI
scans can reveal the subject’s age and sex with a high degree
of accuracy. We corrected for age and sex by providing them
as features to both our RSFCN classifier and the Baseline
classifier. A detailed discussion on studies for which these
confounds may be useful can be found in Barnes et al. [25].

2) Baseline Model: As baseline model, we used a Logistic
Regression classifier with features age and sex. In order to
have parity in terms of the number of features in our model
and that of the baseline, we provided the baseline model
with randomly shuffled fMRI features. In other words, the
fMRI features available to the baseline model did not have
the original subject to fMRI features thus encoding useless
information yet preserving the overall properties of the fMRI
features.

3) 20-fold Cross Validation: We create 20 different splits
for our subjects into training and testing sets. The train:test
split was 75:25. For each split, we trained age-sex matched
classifiers on the training subjects and computed f1 scores
from prediction of our RSFCN classifier and Naive Baseline
model. This procedure gave us two distributions, one from
our model and the other from baseline, of f1-scores, each
constituent of 20 data points, one from each of the 20 folds.
F-1 scores were used due to their robustness in case of highly
imbalanced cases. For such skewed data, majority classifiers,
which always pick the largest class, can achieve trivially high
accuracy.

4) Computing Statistical significance: To measure how
distinctly better our model did compared to a random baseline,
we performed student t-tests on the distribution of F1-scores
from our model and the mean score of the baseline. This
yielded a p-value for the null hypothesis that the baseline
model’s mean prediction was sampled from the distribution
of prediction scores of our model. We use this p-value and
its associated t-test statistic as the two primary measures of
quality of our models. Given the large number of phenotypes,
we used Bonferroni correction to control for false discovery
rates and to evaluate the quality or reliability of the accuracy
score. The p-value scores in the results presented were after
applying the Bonferroni correction.

E. Evaluation against Neurosynth

Neurosynth [10] is repository of activation maps generated
by an automated meta-analysis. It associates activation maps
with 14,371 published neuroimaging papers and also summa-
rizes information from these activation maps. These summaries
are with respect to coordinates in the standard MNI space

and the general common terms found in the title and abstract
of these papers. Neurosynth represents the state-of-the-art in
the neuroimaging community’s understanding of relationship
between regions in the brain and a wide array of behavior
and phenotypes. Here, we align knowledge gained from UK-
Biobank with that in Neurosynth.

1) Neurosynth Brain to Biobank Brain mapping: Each of
our 4,926 classifiers, trained against a particular phenotype
or its variant, learns weights on the given features. These
weights are used to compute an activation map. This is carried
out in the following three steps. First, for each classifier, we
average learned weights from each fold of the 20-fold cross
validation. Second, we map a learned weight for each edge
in the connectivity graph matrix to the corresponding pairs of
ROIs. Finally, the ROI weights are mapped onto voxels. Since
ROIs are essentially sets of voxels, we assign to each voxel
the weight of its respective ROI. In case of voxels that fall
into more than one ROI, we assign it the average weight of
all its corresponding ROIs. Once we have an activation map
for each of our 4926 phenotype variants and an activation map
for each of the 14,371 papers in Neurosynth, we compute a
pairwise similarity matrix (4926,14371) between UK-Biobank
phenotypes and Neurosynth paper embeddings, using Pearson
correlation coefficient as the similarity metric.

2) Neurosynth text to Biobank text mapping: We compared
text descriptions of the 4,926 UK-Biobank phenotypes with the
text from abstract and title of the 14,371 papers in Neurosynth.
We do so by treating the phenotype/variable descriptions in
the official documentation as text documents. Similarly, we
concatenate the title and abstract of the paper titles to get text
documents for each of the Neurosynth papers. We then use
a deep learning-based text embedding technique called Glove
embeddings [26] to convert these documents from Neurosynth
and UK-Biobank to 300-dimensional vectors. This gives us
two matrices: 1) 4926 × 300 dimensional matrix for UK-
Biobank phenotypes and 2) 14371×300 matrix for Neurosynth
papers. We then compute pairwise distances for each pair
of phenotype and Neurosynth paper using cosine distance to
obtain a 4926× 14371 dimensional text similarity matrix.

3) Brain and text alignment: Once the two similarity
matrices are computed, each giving an all-to-all comparison
between Neurosynth papers and Biobank variables, one in
text space and the other in brain space (cell (i, j) of each
matrix representing the same phenotype i and Neurosynth
paper j pair) we compute an alignment score between the two
matrices. The alignment score was computed using Pearson
correlation coefficient between the two matrices. This align-
ment score represents the degree of agreement between the
two spaces i.e. if a paper-phenotype pair have highly similar
activation maps, then that pair also has highly similar text
descriptions.

III. RESULTS

A. Choosing a representation and a classifier

For classification, we needed a representation as features
and a classifier. We evaluated Resting State Functional Con-

iv
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Fig. 2: Neuropredictome identifies new brain-phenotype linkages, along with some expected ones. Physical and lifestyle
phenotypes, typically not looked at in light of neuroimaging, showed strong brain effects. Across neuroimaging modalities,
resting state functional connectivity (rfMRI) broadly yields the best prediction scores and predicts a larger number of phenotypes
compared to structural DTI, T1-weighted or task fMRI.

nectivity Networks (RSFCN) and Logistic Regression (LR)
against other more representations and classifiers against more
sophisticated deep learning representations and more involved.
Our results reaffirmed findings in previous work [12], [13]
that show RSFCN and LR to exhibit the most widely better
predictive power. Results of our evaluation for picking the rep-
resentation is given in Table I and our results for comparison
between different classifiers is given in II.

B. Neuropredictome identifies brain-phenotype linkages, both
expected and new within neuroimaging.

A summary of UK Biobank neuro-phenotype linkages is
provided in Figure 2; representative variables of interest and
their corresponding prediction statistics are shown in Table III.
For all variables measuring cognitive performance, subjects
who scored above the median were distinguished from subjects
who did worse. Many fine-grained aspects of mental health,
such as depression, anxiety, mood swings, manic episodes and
poor appetite were also predicted from fMRI brain activity.

Representation RSFCN FNN BrainNetCNN GCNN
Variable Binarization Metric

1 Sex Accuracy 0.916 0.89 0.9 0.86

2 Age Correlation 0.599 0.599 0.598 0.593
MAE 4.826 4.899 4.824 4.895

3 Pairs Matching Correlation 0.061 0.045 0.067 0.008
4 Fluid Intelligence Correlation 0.239 0.239 0.235 0.232
5 Assessment Center Accuracy 0.67 0.65 0.62 0.66
6 BMI <75percentile Accuracy 0.76 0.77 0.78 0.71
7 Fluid Inteligence <50percentile Accuracy 0.64 0.59 0.66 0.64
8 HeadMotion <25 percentile Accuracy 0.8 0.74 0.79 0.73
9 Volume of Grey Matter <25percentile Accuracy 0.82 0.78 0.75 0.79
10 Pulse Rate <25perentile Accuracy 0.65 0.63 0.6 0.61
11 Alchohol Intake >=Weekly Accuracy 0.72 0.71 0.68 0.69
12 Depression Accuracy 0.69 0.67 0.7 0.65
13 Physical Activity <=moderate Accuracy 0.63 0.58 0.6 0.55
14 Ever Smoked Accuracy 0.6 0.55 0.58 0.55

TABLE I: Resting State Functional Connectivity Networks (RSFCN) yielded the best predictions scores for the selected
set of representative phenotypes. Deep learning based Fully Connected Neural Network (FNN), Brain Net Convolutional
Neural Network (BrainNetCNN) and Graph Convolutional Neural Networks (GCNN) representations were used as baselines
for comparison.

Significant % AUC ROC Significant % Brain MRI significant AUC ROC Sig. Brain MRI
LR SVM LR SVM LR SVM LR SVM

1 RSFCN(16) 0.56 0.53 0.59 0.55 0.68 0.62 0.7 0.56
2 RSFCN(32) 0.55 0.55 0.58 0.54 0.68 0.61 0.68 0.62
3 RSFCN(64) 0.56 0.53 0.58 0.54 0.7 0.64 0.7 0.65
4 RSFCN(128) 0.56 0.54 0.56 0.55 0.69 0.6 0.72 0.61

TABLE II: Logistic Regression (LR) identified a larger number of statistically significant phenotype-neuroimaging
linkages compared to Support Vector Machines (SVM).

v
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That psychiatric and cognitive phenotypes were linked to
brain features was reassuring, but not surprising. However,
one of our most striking results was that the physical and
lifestyle phenotypes of greatest relevance to general medicine,
while not typically assessed by neuroimaging studies, also
showed brain effects. These included physical measures such
as diet, Body Mass Index (BMI), and cardiovascular disorders
such as angina, heart attack, strokes and blood pressure. It
also included variables believed to be determinants of general
well-being, such as quality of sleep, lack of social support
system, experience of past trauma, satisfaction with family
relationships, financial security, as well as leisure and social
activities. Smoking, alcohol consumption and cannabis usage,
even occasional, or in the past, was also found to alter brain

activity enough for it to be strongly identifiable from resting
state fMRI scans. The NP classifier was able to distinguish
subjects who had never smoked cigarettes or cannabis from
those who have tried it at some point, including participants
who had already quit, suggesting a surprisingly long lasting
footprint of addictive substances on the brain that endures
long past consumption. For those that still actively consumed
these substances, NP could predict the amount of consumption
up to a coarse approximation. Importantly, the NP classifier
passed critical ”sanity checks” by failing to find relationships
between brain measures and phenotypes such as bone fractures
and month of birth. Likewise, brain measures did not predict
ethnicity.

Comparing across neuroimaging modalities, our results

TABLE III: Neuropredictome identifies brain-phenotype linkages, across different phenotype categories, that have gone
ignored in neuroimaging along with some linkages that were to be expected.. A linkage is considered strongly statistically
significant if p-value <0.001 (**) and significant if p-value <0.01 (*) based on rejection of the null-hypothesis of association
between F1-score distributions, from different folds of cross-validation, using Resting-State Functional Connectivity Network
(RSFCN) and F1-score distribution from baseline classifier (Base) after Bonferroni correction.

Category Variable +ve pct F1
(Base)

F1
(RFCN)

p-value sig*

Health and medical history Fractured/broken bones in last 5 years 0.083 0 0.00417 0.33
Health and medical history Fracture resulting from simple fall rest (+ve) vs Yes 0.429 0.496 0.501 0.405
Health and medical history Fractured bone site(s) Ankle (+ve) vs rest 0.0938 0.0178 0.0538 0.000241
Health and medical history Fractured bone site(s) Wrist (+ve) vs rest 0.181 0.0528 0.0678 0.0167

Lifestyle and environment Major dietary changes in the last 5 years rest (+ve) vs No 0.36 0.03 0.09 4.13e-18 **
Lifestyle and environment Beef intake > Less than once a week 0.394 0.0951 0.151 7.87e-16 **
Lifestyle and environment Coffee intake > 75th percentile 0.19 0 0.000832 0.00211
Health and medical history Diabetes diagnosed by doctor Yes (+ve) vs rest 0.0499 0 0.000375 0.33

Lifestyle and environment Number of cigarettes currently smoked daily < 50th percentile 0.469 0.469 0.523 1.05e-06 **
Lifestyle and environment Smoking status Previous (+ve) vs rest 0.336 0.102 0.132 1.37e-10 **
Lifestyle and environment Ever taken cannabis Yes (+ve) vs No 0.215 0.0796 0.136 2.35e-12 **
Lifestyle and environment Frequency of drinking alcohol ≤ Monthly or less 0.197 0.00114 0.0186 2.22e-09 **
Lifestyle and environment Frequency of drinking alcohol > 2 to 3 times a week 0.303 0.0701 0.123 8.97e-14 **

Cognitive Function Fluid intelligence score < 50th percentile 0.455 0.345 0.485 1.55e-23 **
Cognitive Function Matrix Pattern Completion < 50th pctl. 0.372 0.279 0.378 2.33e-17 **
Cognitive Function Numeric Memory < 50th percentile 0.338 0.0987 0.194 5.35e-17 **
Cognitive Function Reaction Time < 50th pctl. 0.492 0.603 0.614 2.39e-06 *
Cognitive Function Trail making < 50th percentile 0.493 0.611 0.626 8.52e-07 **
Cognitive Function Tower rearranging < 50th percentile 0.405 0.358 0.411 6.18e-11 **

Mental Health Seen doctor (GP) for nerves, anxiety, tension or depression 0.321 0.104 0.138 2.05e-11 **
Mental Health Bipolar and major depression status > No Bipolar or Depression 0.291 0.114 0.18 7.23e-11 **
Mental Health Manic/hyper symptoms None of the above (+ve) vs rest 0.43 0.391 0.429 9.18e-10 **
Mental Health Family relationship satisfaction > Very happy 0.322 0.0177 0.0415 9.69e-11 **
Mental Health Financial situation satisfaction > Very happy 0.408 0.301 0.325 4.83e-10 **
Mental Health Leisure/social activities None of the above (+ve) vs rest 0.245 8e-05 0.01 2.9e-11 **
Mental Health Victim of sexual assault > Never 0.152 0.000532 0.00596 5.78e-06 *
Mental Health Physically abused by family as a child > Never true 0.199 0.000269 0.00468 5.61e-07 **

Physical measures Body mass index (BMI) > 75th percentile 0.248 0.000736 0.145 1.5e-23 **
Physical measures Diastolic blood pressure, manual reading > 75th percentile 0.229 0.0925 0.141 1.38e-07 **
Physical measures IPAQ activity group > moderate 0.397 0.103 0.172 6.12e-17 **

Lifestyle and environment Sleeplessness / insomnia ≤ Never rarely 0.221 0.00345 0.011 2.5e-07 **
Lifestyle and environment Daytime dozing / sleeping (narcolepsy) Sometimes (+ve) vs rest 0.205 0.00168 0.0176 7.54e-10 **
Lifestyle and environment Sleep duration < 25th percentile 0.244 0.000247 0.012 8.74e-10 **

Sociodemographics Average total household income before tax ≤ 18,000 0.213 0.0138 0.0561 9.99e-15 **
Sociodemographics Average total household income before tax > 31,000 0.254 0.256 0.309 2.89e-13 **

Sociodemographics Ethnic background African (+ve) vs rest 0.00199 0 0.0161 0.109
Sociodemographics Ethnic background Chinese (+ve) vs rest 0.00277 0 0.031 0.0153
Sociodemographics Ethnic background Indian (+ve) vs rest 0.00654 0 0.0295 0.00475
Sociodemographics Ethnic background rest (+ve) vs British 0.0744 0 0.0043 0.00122

UK Biobank assessment center Newcastle (+ve) vs Cheadle 0.156 0 0.246 1.2e-24 **

vi
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Fig. 3: Neuropredictome results strongly align with results
reported in 14,371 Neurosynth papers. When Neuropredic-
tome maps a Neurosynth paper to a UK-Biobank phenotype
based on similarity in brain activity, then the phenotype-
paper pair are also similar in terms of textual descriptions.
The more confident Neuropredictome is about its predictions,
the stronger the alignment. Most significant phenotypes (**)
r = 0.25; moderately significant r = 0.18 (*); for non-
significant (N.S) phenotypes r = 0.09.

show Resting-state fMRI to broadly yield the best prediction
scores and to predict the largest number of phenotypes as
compared to structural DTI, T1-weighted or task fMRI. In
line with previous findings [27], our results show that resting
functional connectivity lends additive prediction power to
structural neuroimaging and is a more generally informative
fingerprint of the subject as compared to task networks [28].

Also of note for multi-site studies was the profound effect
of imaging site. This was despite the fact that in order

Fig. 4: Glove text embeddings [26] over individual pheno-
type/variable descriptions and pearson as the brain simi-
larity measure, together, yielded the best alignment score.
We conducted an extensive search over the hyperparameter
search space to optimize for the best alignment scores. Other
fixed hyperparameters were as follows: the brain space was
MNI, the text-to-text similarity measure was cosine and the
measure for the final alignment score was pearson correlation
coefficient.

to maximize data compatibility across the different imaging
centers, identical scanners were used with no major software
or hardware updates throughout the study, with identical
acquisition parameters, as well as identical post-processing
pipelines. These results are in line with recent work by our
group showing the influence of scanner-specific artifacts on
neuroimaging data [29].

C. Brain maps learned by our classifier align with results from
14,371 published papers.

Figure 3 shows that Neuropredictome’s classifiers from
Biobank linkages were strongly supported by Neurosynth
meta-analyses of the neuroimaging literature. It demonstrates

TABLE IV: Activation Maps learned by Neuropredictome for a wide variety of phenotypes strongly align with relevant
Neurosynth papers. A curated list is given of UK-Biobank phenotypes and their corresponding top ranked Neurosynth paper
with respect to similarity in reported brain activations and those identified by Neuropredictome. Corresponding text similarity
between description of phenotype and title and abstract of top-ranked paper is also given.

ID Biobank variable pval Text
similarity

Neurosynth paper title PubMed ID

20116 Smoking status > Never 2.15e-16 0.21 Nicotine withdrawal modulates frontal brain function during an affective
Stroop task

21989805

20414 Frequency of drinking alcohol > 2 to 3
times a week

8.97e-14 0.2 Influence of cue exposure on inhibitory control and brain activation in
patients with alcohol dependence.

22557953

5699 Fluid intelligence: arithmetic sequence
recognition

5.52E-17 0.13 The interaction of process and domain in prefrontal cortex during inductive
reasoning

25498406

20240 Numeric Memory - Maximum digits re-
membered correctly < 50th percentile

5.35e-17 0.17 Cross-modal processing in auditory and visual working memory 16154767

6772 Trail making - Interval between previous
point and current one in numeric path >75
percentile

4.26E-14 0.22 The neural basis for establishing a focal point in pure coordination games. 22009019

2090 Seen doctor (GP) for nerves, anxiety, ten-
sion or depression

4.26E-14 0.36 Regional homogeneity associated with overgeneral autobiographical mem-
ory of first-episode treatment-naive patients with major depressive disorder
in the orbitofrontal cortex

27923192

20425 Anxiety - Ever worried more than most
people would in similar situation

2.01E-12 0.22 Metabolic and functional connectivity changes in mal de debarquement
syndrome

23209584

20126 Bipolar II Disorder (+ve) vs rest 2.87E-11 0.36 Possible structural abnormality of the brainstem in unipolar depressive
illness

16227541

21002 Weight > 75% percentile 6.97E-24 0.24 Widespread reward-system activation in obese women in response to
pictures of high-calorie foods.

18413289

1220 Daytime dozing / sleeping (narcolepsy) 3.64E-13 0.13 Hippocampal activity mediates the relationship between circadian activity
rhythms and memory in older adults.

26205911

vii

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on February 28,2022 at 09:21:10 UTC from IEEE Xplore.  Restrictions apply. 



535

that when our brain maps align well with Neurosynth brain
maps (the low ranking categories to the left), the text descrip-
tions of Biobank variables match well with paper titles in the
literature. Further, the text similarity degrades as we move
from variables ranked highly significant to significant to non-
significant by NeuroPredictome, as should be the case if we
make accurate linkages between fMRI images and categorical
variables.

IV. CONCLUSION

We have presented a novel machine learning based predic-
tive framework called NeuroPredictome (NP) that identifies
new relationships between brain-based features and pheno-
types. All identified associations between phenotypes and the
brain can be accessed at https://neuropredictome.com. Future
work should focus on studying better representations for
fMRI analysis, and the question of whether non-linear models
(including neural networks) can identify more statistically sig-
nificant relations given the data and evaluation environments.
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