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Abstract of the Dissertation

Predictive models and representations for
neuroimaging and genetic data

by

Syed Fahad Sultan

Doctor of Philosophy

in

Computer Science

Stony Brook University

2022

In this work, I present multiple computational models for extract-
ing relevant features and learning predictive representations for
neuroimaging and genetic data in UK-Biobank. These models
are designed with the goal of providing improved diagnoses and a
better understanding of medical conditions and other phenotypes.
This includes a machine learning based predictive framework called
Neuropredictome that identifies statistically significant linkages be-
tween 4928 phenotypes and neuroimaging features of 19,831 sub-
jects. I also provide a novel quantitative method that uses deep
learning based text embeddings to evaluate how well Neuropredic-
tome’s results align with 14,371 previously published peer-reviewed
research articles. Next, I present a generalized framework based on
state space systems that bridges the gap between network theory
and control theory and extracts fMRI derived control circuits. This
framework has the scalability required to mine mega-scale datasets,
hirtherto not possible using existing methods. In a purely data-
driven manner, without priors, I demonstrate that the framework
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identifies thalamus-linked prefrontal-limbic and ventral stream sub-
circuits, selectively engaged during sensorimotor processing of af-
fective and non-affective stimuli. I demonstrate that circuit-wide
dysregulation, defined by degree of drift from healthy trajectories,
tracks symptom severity for neuroticism, depression, and bipolar
disorder. I also present methods for constructing low-dimensional
vector representations (embeddings) of large-scale genotyping data,
capable of reducing genotypes of hundreds of thousands of SNPs
to 100-dimensional embeddings that retain substantial predictive
power for inferring medical phenotypes. I also demonstrate how
these genotype embeddings can be used for sharing sensitive med-
ical data while preserving subject anonymity. Finally, using struc-
tural and functional neuroimaging in conjunction with cognitive
tests, I show that type 2 diabetes mellitus accelerates brain ag-
ing and cognitive decline. Together, I believe such computational
techniques can significantly advance modern medicine and treat-
ment while enabling several scientific discoveries that revolutionize
human health.
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Chapter 1

Introduction

1.1 Background

How can three pounds of flesh still outperform the most powerful computers
to date, and that too while consuming less energy than an average lightbulb?
The inner working of the human brain undoubtedly remains one of the biggest
scientific mysteries to date. The set of technologies that hold the greatest
promise to ever solving this great mystery are known as neuroimaging. These
technologies allow us to peek inside the human brain from the outside, and
capture images that reveal not only what it is made up of but also what it is
doing at any point in time.

One neuroimaging technology in particular stands out as having revolu-
tionized our ability to image the human brain: Magnetic Resonance Imaging
(MRI). MRI provides us the ability to safely watch the human brain in action,
which in turn allows us to understand how the brain performs many of its
functions. MRI scans can be grouped into two broad categories: structural
and functional MRI, each measuring a distinct but equally important aspect
of the brain. Structural MRI captures the makeup of brain’s anatomy, such as
how much water or fat is present in the tissue. Because different parts of the
brain contain different amounts of water and fat, they show up on the MRI
image as either brighter or darker. Structural MRIs of the brain are often
used for detecting diseases and for understanding differences in size and shape
of different brain regions between people, but they fail to capture what the
brain is doing. For that, we need functional MRI (fMRI). fMRI picks up on
the after effects of brain activity by sensing the changes in amount of oxygen
in the blood, for a particular area, over a window of time.

In many cases fMRI can even allow us to decode what people are expe-
riencing or thinking about by looking at their brain activity, when they are
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perfoming a task or simply resting. MRI has also shown us how experiences
change the brain, and how individual human brains change over time from
childhood to old age. It has also shown us that all human brains follow the
same basic principle, while also exhibiting key differences across people, thus
giving insights into brain dysfunctions that relate to various mental illnesses.

fMRI relies upon a set of critical chemical and biological dominoes that all
had to be perfectly in line for the technology to work. The first biological fact
that makes fMRI possible is that the firing of neurons is relatively localized in
the brain. For example, all humans, in fact most animals, possess a specific
part of the brain, often in the back of the head, that processes visual infor-
mation, generally called the visual cortex. This part of the brain responds to
information of different parts of the visual world coming from the eyes. Simi-
larly, different parts of the brain are responsible for doing different things. In
other works, there is some degree of modularity in our brains. This modular-
ity and localization of function ultimately allows us to decode from the brain
scans, what the person in the scanner might have been doing or thinking of at
the time of the scan.

Another aspect of the brain that is critical to fMRI being extremely ef-
fective as a tool for studying human brains is that brains are organized in a
relatively consistent manner across individuals. All humans, for instance, in
addition to the visual cortex, have a region of the brain, at the rear of the
frontal lobe, that controls the movement of hands and feets. The alignment of
different brain regions across people is not always perfect, in fact, far from it,
but it’s good enough to allow group level analyses.

The third crucial factor is that the localized firing of neurons result in
increase of blood flow at that location. Without such localization, we wouldn’t
be able to narrow down the precise region of interest relevant to the neurons
that caused the activity.

The final important characteristic is that blood flow response to an active
region of the brain active neurons brings with it glucose and oxygen for the
neurons. The amount of glucose supplied is just the right amount to account
for the energy needed by the neurons to fire, but the amount of oxygen sent is
in surplus, relative to the small amount actually needed by the neurons. It is
precisely this overflow of oxygenated blood that lets the fMRI scanner detect
the activity of neurons.

fMRI has ultimately raised some extremely fundamental questions about
how we view ourselves as humans. If all cognition is just neuronal activations,
that we can visualize with MRI, does that mean telepathy is only a short
step away? Would we be able to read each other’s minds? Have we solved
the mystery of human consciousness? In what sense are we truly responsible
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for our choices? Is addiction the same as any other physiological disease or a
failure of self control or both?

It is these kinds of questions have resulted in recent years witnessing an
explosion of interest in neuroimaging research. Each year, thousands of brain-
imaging studies explore the links between brain and behavior. Last year, over
35,000 fMRI articles were published [2], including more than 6,000 publications
containing the term ”neuroimaging” [3]. These include study of a truly wide
array of behaviors and characteristics, ranging from mental illnesses, cognitive
acuity and adolescent development to left-handedness, gambling and political
leanings.

However most neuroimaging research involves probing single variables to
make narrow predefined discoveries, typically on a small data set. Individual
studies therefore, seldom have statistical power to establish fully trustworthy
results [4, 5]. Most neuroimaging studies suffer from the problem of small
sample sizes. Median sample size of fMRI studies in 2015 was 28.5 subjects
and 75th percentile of sample size in cognitive neuroscience journals published
between 2011 to 2014 was 28 subjects. Working with such small sample sizes
raises concerns regarding representativeness of the sample and inflated false
discovery rate, particularly in its usage for clinical purposes, as well as regard-
ing reproducibility. Low statistical power reduces the probability of detecting
statistically significant results. As a consequence, in neuroimaging, effect sizes
are often overestimated and reproducibility of results is fairly low. Finding
consistent aggregate trends in the knowledge acquired across these studies is
crucial but daunting.

Technological advances in recent decades however, now allow generating,
collecting and analyzing massive data sets. This new scale in availability of
data necessitates moving away from traditional methods that are used to infer
statistically relevant effects in carefully chosen variables towards more ma-
chine learning based pattern-recognition algorithms that can identify relevant
biological signatures in an unbiased way and produce results that generalize
better to new unseen data.

1.2 Predictive models and representations

In this document I use an unprecedentedly large-scale neuroimaging and ge-
netic data set UKBiobank [6] (N=19,831) and detail multiple computational
models and frameworks for effectively predicting disease and other phenotypes,
while also shedding critical light on the underlying mechanisms at play.

In Chapter 2, I present a novel prediction based framework called Neu-
ropredictome that allows identification of statistically significant linkages be-
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tween phenotypes and neuroimaging features from four different modalities.
I evaluate phenotype linkage to brain activity of 19,831 subjects with 4926
variables, pertaining to the health, physiology, psychology, social and eco-
nomic state. I corroborate my identified regions of the brain with previous
work by providing a novel quantitative evaluation of how well my results align
with existing meta-analyses of 14,371 published neuroimaging research arti-
cles. My results show that neuroimaging reveals as many neurological links
to physical and lifestyle factors as to cognitive factors, supporting a more
integrative approach to medicine that considers disease interactions between
multiple organs and systems. My analysis is presented as a public resource
at https://neuropredictome.com providing an interpretable view of human
brain organization and decoding, to assist in hypothesis generation and eval-
uating future studies.

Mental health disorders are increasingly believed to be biological disor-
ders involving some form of breakdown in brain circuitry. However, most
existing work in computational neuroscience focuses on networks rather than
circuits. Techniques that do allow modeling circuits in the brain at the macro
scale unfortunately do not scale well enough to allow studying circuits at the
whole-brain level. This not only forgoes recent advances in high-resolution
non-invasive human neuroimaging technologies and availability of large data
sets, but also severely limits the clinical applicability of such work. In Chapter
3, I bridge the gap between network theory and control theory and present a
scalable framework for extracting fMRI-derived (generative) control circuits,
then use circuit trajectories to estimate their control error. Using synthetic
circuits, I first demonstrate that my framework accurately identifies each cir-
cuit’s architecture and models its dynamics by estimation of transfer functions
at the individual node level. As a use case, I then apply the framework to
human task-based functional MRI data from UK Biobank (N=19,831). In a
purely data-driven manner, without priors, my framework identified thalamus-
linked prefrontal-limbic and ventral stream subcircuits, selectively engaged
during sensorimotor processing of affective and non-affective stimuli. Finally,
I demonstrate that circuit-wide dysregulation, defined by degree of drift from
healthy trajectories, tracks symptom severity for neuroticism (ventral subcir-
cuit), depression (prefrontal-limbic subcircuit), and bipolar disorder (full cir-
cuit).

In Chapter 4, I develop methods for constructing low-dimensional vector
representations (embeddings) of large-scale genotyping data, capable of reduc-
ing genotypes of hundreds of thousands of SNPs to 100-dimensional embed-
dings that retain substantial predictive power for inferring medical phenotypes.
I demonstrate that embedding-based models yield an average F-score of 0.605
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on a test of ten phenoypes (including BMI prediction, genetic relatedness,
and depression) versus 0.339 for baseline models. Genotype embeddings also
hold promise for creating sharing data while preserving subject anonymity: I
show that they retain substantial predictive power even after anonymization
by adding Gaussian noise to each dimension.

Type 2 diabetes mellitus (T2DM) is known to be associated with neu-
robiological and cognitive deficits; however, their extent, overlap with aging
effects, and the effectiveness of existing treatments in the context of the brain
are currently unknown. In Chapter 5, I characterize neurocognitive effects
independently associated with T2DM and age in a large cohort of human sub-
jects from the UK Biobank with cross-sectional neuroimaging and cognitive
data. I then proceeded to evaluate the extent of overlap between the effects
related to T2DM and age by applying correlation measures to the indepen-
dently characterized neurocognitive changes. My findings were complemented
by meta-analyses of published reports with cognitive or neuroimaging mea-
sures for T2DM and healthy controls (HC). I also evaluated in a cohort of
T2DM diagnosed individuals using UK Biobank how disease chronicity and
metformin treatment may influence the characterized deficiencies. All analyses
were Bonferroni corrected. Duration of T2DM ranged from 0–45 years (mean
9.7±7.9 years); 559 were treated with metformin alone, while 473 were un-
medicated. My meta-analysis evaluated 34 cognitive studies (N=22,231) and
60 neuroimaging studies: 30 of T2DM (N=866) and 30 of aging (N=1088).
As compared to age, sex, and education-matched HC, T2DM was associated
with marked cognitive deficits, particularly in executive functioning and pro-
cessing speed. Likewise, I found that the diagnosis of T2DM was significantly
associated with gray matter atrophy and reorganization of brain activity. The
structural and functional changes associated with T2DM show marked overlap
with the effects correlating with age but appear earlier, with disease duration
linked to more severe neurodegeneration. The neurocognitive impact of T2DM
suggests marked acceleration of normal brain aging, by approximately 24%,
made worse with chronicity. As such, neuroimaging-based biomarkers may
provide a valuable adjunctive measure of T2DM progression and treatment ef-
ficacy based on neurological outcomes. Conventional T2DM treatments must
be reevaluated with respect to restraining neurodegeneration.

Variables declared important by traditional null hypothesis significance
testing can be incongruent with the variables that maximize predictive perfor-
mance in new individuals or settings. This combined with small sample sizes
is a major factor in the low reproducibility crisis [7] plaguing the scientific
world today. The advent of “big data” in neuroscience and biomedicine in
conjunction with with recent advances in machine learning and deep learning
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presents an tremendous opportunity to address these problems. The data-rich
neuroscientist and geneticist can ask many new questions that could probably
never be addressed quantitatively before.

In this document, I present models and analytical techniques that leverage
the availability of large-scale data sets made possible by new modes of data
dissemination and open science and also use state of the art machine learn-
ing techniques better suited for their analyses. These not only optimize for
predictions and reproducibility of results for new previously unseen subjects
but also evaluate them against decades of past and existing research. Most
importantly, the results presented here argue that prediction does not have to
come at the cost of interpretability. Mechanistic insight does not need be com-
promised by optimizing predictive accuracy and the two goals can be achieved
together and synergistically.
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The remaining of the document is structured as follows:

1. Chapter 2 - Building a machine learning based predictive framework
called Neuropredictome that links 4928 phenotypes to brain features
from fMRI scans of 19,831 subjects in UK-Biobank. The framework
is then evaluated against 14,371 published peer-reviewed papers using
deep learning based text embeddings.

2. Chapter 3 - Modeling the brain as an amalgam of control circuits
and modeling disease as the control circuit’s failure to maintain home-
ostatic or allostatic control. Using a system of differential equations to
model the complex causal relationships and feedback loops that consti-
tute brain circuits, I show how the prefrontal-limbic circuit [8] and the
cortico-thalamic circuit [9] can be discovered from task-fMRI scans in UK
Biobank. Modeling prediction error as the measure of dysregulation, I
also show how the two circuits are dysregulated across the following psy-
chiatric disorders: neuroticism, depression and bipolar disorder.

3. Chapter 4 - I develop methods for constructing low-dimensional vector
representations (embeddings) of large-scale genotyping data, capable of
reducing genotypes of hundreds of thousands of SNPs to 100-dimensional
embeddings that retain substantial predictive power for inferring med-
ical phenotypes. I also show that these embeddings retain substantial
predictive power even after anonymization by adding Gaussian noise to
each dimension.

4. Chapter 5 - I characterize neurocognitive effects independently associ-
ated with Type 2 Diabetes (T2DM) and Aging in UK Biobank with cross-
sectional neuroimaging and cognitive data. My results show a significant
overlap in the effects related to T2DM and Aging, complemented by
meta-analyses of published reports with cognitive or neuroimaging mea-
sures. I also evaluate how disease chronicity and metformin treatment
may influence the characterized deficiencies. My results show T2DM ac-
celerates normal brain aging, by approximately 24%, made worse with
chronicity.
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