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Abstract—In this work, we look at problems of urban sens-
ing from the lens of conversations (tweets) on Twitter. Using
techniques from statistical natural language processing on geo-
tagged tweets, we identify areas which exhibit similar aggregate
behavior, infer the land-use of areas and predict types of
individual establishments. We demonstrate our inferences using
over two years of Twitter data, for a wide variety of spatial
contexts and evaluate our results against existing open data sets.
Our results are novel in extremely detailed resolution of their
mapping, and demonstrate that tweets can be a very effective
urban sensor and in many regards are superior to other data
sources for studying urban spaces. Our techniques are language
agnostic, and can be applied to any city where enough similar
data is available.

I. INTRODUCTION

With 54% of the world’s population now living in urban
areas [1], a proportion that is expected to increase to 66
per cent by 2050, there is a dire need to better understand
the ever increasing complexities of modern cities. Traditional
approaches to understanding the city encompass cumbersome
survey activities.

In this paper, we tackle problems of urban sensing from
the similarities and differences in conversations (tweets) on
Twitter, in relation to space. We accomplish this by using a
simple yet effective model that we call Space-as-Documents.
The Space-as-Documents applies the maxim ‘You shall know
a word by the company it keeps’ [2] from statistical language
processing to problems of studying cities using text features.
We argue and demonstrate that when space is modeled as
text documents, techniques from document processing can
be applied effectively to many different problems of urban
sensing.

Using text of over two years of geo-tagged tweets from New
York City, we first identify similar areas in the city (Figure 1),
modeling it as a documents clustering problem. Next, we infer
land use of different areas in the city, effectively modeling

(a) Groundtruth for Zones (b) Results after classification

Fig. 1: Land-use categories of New York City: (a) Ground
truth for residential, commercial, manufacturing and parks
categories. (b) The same categories inferred from Twitter
conversations through supervised learning.

it as a multinomial document classification problem, and
evaluate against data made public by the local city government.
Finally, we use the same techniques to infer the types of
points of interest in the city. Here we use points of interest
data from Open Street Maps [3] as labels for classification.
To demonstrate the effectiveness of our techniques for other
highly divergent languages and contexts, we also report results
of points-of-interest sensing for Mecca, Saudi Arabia. For each
experiment, we present a quantitative evaluation of our results
against existing open data sets.

II. SPACE AS DOCUMENTS

Much of modern advances in natural language processing
and information retrieval are statistical techniques based on the
old adage: ‘You shall know a word by the company it keeps’,
decreed by the famous linguist J.R.Firth in the 1950s. Simply
put, it states that similar words appear in similar context and
vice versa.
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Fig. 2: Approach overview: Behavioral and Contextual data
is mapped on to the same spatial structure. Text documents
alone, rather than any spatial parameter, act as features for
supervised and unsupervised learning.

In addition, from cognitive psychology, we know that
context influences perception, and resultantly, behavior. This
phenomenon is generally referred to as the Context Effect.
It suggests that observed behavior contains key insights into
the context it takes place in, or that similar behaviors indicate
similar contexts.

The Space-as-Documents model we use here connects these
two ideas by modeling space as a set of text documents.
Doing so enables us to leverage the amazing progress in
recent years in natural language processing and information
retrieval for spatial analysis. The Space-as-Documents model
is particularly well-suited for problems of urban sensing where
it is required to hone in on the relative similarities and
differences between different areas in the city.

Given geo-located text data D available for ND spatial
units {d1, d2...dND

} where di = (locationi, texti) and
locationi, 0 < i < ND is either a polygon or a point, the
Space-as-Documents model involves the following three steps:

1) Segmentation of space using a spatial structure S
constituent of Ns spatial units {s1, s2...sNs

} such that
∀di ∈ D,∃ s∈ S such that s spatially contains di.

2) Aggregation: ∀s ∈ S, creation of a representative text
document Ts, such that Ts = aggregate function(Ds)
where Ds ⊂ D and ∀ds ∈ Ds, s spatially contains ds.

3) Representation: ∀s ∈ S representation of Ts in feature
space.

III. URBAN SENSING USING SPATIAL DOCUMENTS

In this paper, we present three experiments on urban sens-
ing: one using unsupervised learning and two using supervised
learning. The general approach taken for these is outlined in
Figure 2. Behavioral and contextual data sets are both mapped
onto the same spatial structure.

Spatial textual data points of behavioral data are aggregated
over time and space as detailed in Section II. For all our
experiments, we use simple concatenation as the aggregation
function to create representative documents. Contextual data
is mapped onto the spatial structure such that each unit in the
spatial structure is assigned context value of the spatial unit

(a) Top twelve clusters from
Spectral Clustering on text doc-
uments

(b) Nine of twelve clus-
ters with boundaries of cor-
responding boroughs and
neighborhoods

(c) Cluster No. 2 and Cluster
No. 8 and parks in the city.

(d) Cluster 10 and neighbor-
hoods with large Hispanic
populations.

Fig. 3: Results of clustering for New York City are shown

that makes up the greatest percentage of its area. It is pertinent
to point out here that only text based features were used in
our experiments and space was not used as a feature.

Document Representations – For our experiments, we
use a distributed representation of documents based on
Word2Vec [4] called Paragraph Vector [5].

Twitter Data – For our experiments, we used text from geo-
tagged tweets for the cities of New York and Mecca, Saudi
Arabia collected from October 2013 to March 2016.

A. Unsupervised Urban Sensing

We start off by using unsupervised clustering to discover
similar areas in the city. We segment New York City into a
grid of equal sized contiguous cells, each cell with dimensions
roughly of 110 by 85 meters. Each cell was represented by
the text of all tweets from its area, over time, coalesced into a
single representative document. Next, Doc2Vec representations
of these documents were created. For clustering, we used
Spectral Clustering [6].

Figure 3a shows the result. Table I gives cluster numbers
and the most important features (words), taken as the vectors
closest to the centroid, for each cluster. Each dot in Figure 3a
is a cell in our grid. The sparse areas in the city either did
not have enough tweets from within them or were associated



TABLE I: Most important features, derived from spectral
clustering of text documents

No. Color Most important features
1 parks central prospect beautiful walk
2 brooklyn williamsburg bridge bar thank
3 jfk flight airport plane land terminal
4 nj jersey hoboken secaucus hackensack
5 job hire career arc retail veteran apply sale
6 bronx zoo pelham south harlem que life
7 island staten coney ferry long governor
8 beach rockaway orchard brighton far
9 flush meadow queen corona park scan

10 que la el es en como pero esta cuando
11 museum art metropolitan american nature
12 bay terrace side boulevard bell target

with a cluster that had a nearly uniform distribution over the
city and was thus removed.

Most clusters in Figure 3a correspond to a unique borough
or neighborhood of the city. Figure 3b shows these clusters
with polygon boundaries of their corresponding borough or
neighborhood. Clusters 2, 5, 7 and 6, correspond to boroughs
Brooklyn, Manhattan, Staten Island and Bronx respectively.
Most other clusters in Figure 3b correspond to neighborhoods
within the fourth borough: Queens. Clusters 3, 8, 9, 12 and
4 correspond to the two airports in the city, Far Rockaway
Beach, Flushing, Bay Terrace/Bayside and New Jersey across
the Hudson River respectively.

It is important to keep in mind here that space was not
used as a feature. Yet still, these clusters exhibit strong spatial
patterns. A part of the reason for that lies in Table I. It is
evident that in almost all cases, the most discriminable features
for a cluster are references to names of places. This is however
not true for Cluster 5, the most important features for which
are activity-related words, and Cluster 10, which is composed
of tweets in Spanish.

Figure 3c focuses on cells of Cluster 1. In the figure, the
green polygons show parks in the city. It can be seen that
while the cluster includes most major parks in the center of the
city, it does not include cells for some parks, cells for which
are associated with Cluster 8. Furthermore, there is a high
concentration of Cluster 1 cells in some areas, where there
are in fact no parks; these are highlighted by red polygons.

It turns out that red polygons are neighborhoods of New
York City that have the word ’Park’ in their names: Rego
Park, Ozone Park and South Ozone Park. On the other hand,
cluster 8 corresponds mainly to areas along the coast and
cells for some parks are included in Cluster 8 because of
their close proximity to water bodies and the resultingly high
concentration of words like ’beach’ in tweets from them.

These two examples point to the some of the shortcomings
in using text for urban sensing.

Figure 3d focuses on cluster 10. As also evident from Table
I, this cluster is composed of cells where most tweets are in
Spanish. In Figure 3d, the yellow polygons are neighborhoods
of New York City with a population of 15000 or more people,

of age 5 and over, who speak Spanish as per the American
Community Survey (2009-2013). As it can be seen from
Figure 3d, areas with a higher concentration of Cluster 7
cells, correspond quite strongly to these neighborhoods. This
is good example of the power of using text for urban sensing.
Most other data features conventionally used for urban sensing,
such as call detail records or temporal features from social
networks, can not provide insights into the distribution of
ethnic populations in the city.

B. Land-Use Sensing

Next, we infer land-use of areas for the New York City,
modeling it as a multinomial document classification prob-
lem. We use Space-as-Documents model to create aggregated
documents, representative of different areas in the city and
then classifying them against land-use labels.

Land-use data – We obtained ground-truth land-use data
from New York City’s Department of City Planning [7]. This
data contains 5469 units each belonging to one of the 157
unique land-use categories. Each type further belongs to one
of the five broader categories: Residential, Commercial, Park,
Manufacturing and Battery Park City. In this study, we only
use four land-use types as our labels. We did not include the
Battery Park City because areas of the category were too few
in number.

For land-use sensing, we segment space using a grid with
cells of equal size, each roughly 110x85 meters in their
dimension. On mapping land-use categories to cells of our
grid, we ended up with 39,012 cells for residential, 7536 for
manufacturing, 4970 for Parks, 3506 cells for Commercial and
42 cells for Battery Park City category.

Before creating document representations, all tweets were
made to undergo the standard pre-processing steps of tokeniza-
tion, case-normalization, stop-words removal and stemming.
Furthermore, URLs and twitter-handles were excluded from all
tweets, since these are not influenced by the spatial context.
After pre-processing, we create Doc2Vec representations of
documents. For classification, we use a classifier based on
Support Vector Machines (SVM) with a non-linear Radial
Basis Function (RBF) kernel.

TABLE II: Results for land-use sensing

Precision Recall F1-score
Residential 0.69 0.78 0.73
Commercial 0.73 0.69 0.71

Manufacturing 0.86 0.81 0.82
Parks 0.77 0.69 0.72

Figure 1 and Table II gives the results of our land-use
sensing experiments. In terms of classes, relatively low scores
of Residential and Commercial areas could possibly be ex-
plained by the high concentration of high-rise buildings in New
York City, particularly Manhattan, where the same building
offers multiple spatial contexts. This also explains the high
scores obtained for Manufacturing areas. However, high rise
buildings do not explain why Parks do not yield better scores
than Commercial and Residential areas. This is all the more



(a) Groundtruth for POIs of
New York City

(b) Results after classifica-
tion of New York City

(c) Groundtruth for POIs of
Mecca

(d) Results after classifica-
tion for POIs of Mecca

Fig. 4: Results for Points-of-Interest for New York City and
Mecca are shown

surprising given that in Section III-B, Parks distinctly stand
out from pockets of Residential and Commercial areas. Gen-
erally speaking, the nature of the city can have a considerate
impact on the outcome of the urban sensing techniques we
present here. We posit that results for urban sensing would
be markedly better for more spread out cities with a lower
concentration of high rise buildings.

C. Points of Interest Sensing

Finally, we used the same techniques to infer types of indi-
vidual establishments in the city. Furthermore, to demonstrate
that our techniques are language agnostic and work well for
diverse contexts, we conducted our experiments for two highly
divergent cities, with different dominant languages, in different
parts of the world: New York City, US where most tweets were
in English and Mecca, Saudi Arabia where most tweets were
in Arabic.

Points of Interest data – We collected points-of-interests
for New York City and Mecca from Open Street Map. Points of
interest offering similar contexts were grouped together into
broader categories. The POI categories for New York City
are: Food, Sports, Health, Education, Museum, Entertainment.
For Mecca, Saudi Arabia, POI categories are: Food, Health,
Education, Shopping and Pilgrimage.

Having collected the points-of-interest, we used the Space-
as-Documents model to create representative text documents
for each establishment. Document representation, preprocess-
ing steps and classifier used here are same as detailed in III-B.

TABLE III: Results for POIs sensing for New York City

Count Precision Recall F1-score
Museum 79 0.91 0.9 0.91
Health 85 0.81 0.88 0.85
Sports 84 0.89 0.86 0.87

Entertainment 282 0.79 0.58 0.67
Education 326 0.62 0.69 0.65

Food 682 0.53 0.62 0.57

TABLE IV: Results for POIs sensing for Mecca, Saudi Arabia

Count Precision Recall F1-score
Food 26 0.90 0.96 0.93

Health 15 0.89 0.93 0.91
Education 13 0.86 0.88 0.87
Shopping 26 0.77 0.73 0.75

Pilgrimage 150 0.73 0.66 0.69

Figure 4, Table III and Table IV give results for our experi-
ments. Differences in scores for same kinds of spatial contexts
can be attributed to the unique properties of cities in terms of
their spread, structure and density. Despite the same models
and techniques, note how overall the scores for points of
interest sensing are higher as compared to scores for land-use
sensing. We postulate that the more specific a spatial context,
the more predictable the behavior observed. Regardless, the
fact that the same techniques are effective at urban sensing for
two radically divergent cities, offering widely different spatial
contexts, and data in two different languages, is testament
to the wide-applicability and effectiveness of our models and
techniques.

IV. CONCLUSION

In this paper, we solve problems of urban sensing using
the intuition that context influences behavior. The results of
our experiments validate our intuitions and techniques. We
successfully demonstrate that physical spatial context does
in fact influence behavior and by studying conversations, as
captured from Twitter, key insights can be gained into the
spatial contexts in which they take place.
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