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Abstract
We develop methods for constructing low-dimensional vec-
tor representations (embeddings) of large-scale genotyping
data, capable of reducing genotypes of hundreds of thou-
sands of SNPs to 100-dimensional embeddings that retain
substantial predictive power for inferring medical pheno-
types. We demonstrate that embedding-based models yield
an average F-score of 0.605 on a test of ten phenoypes (in-
cluding BMI prediction, genetic relatedness, and depression)
versus 0.339 for baseline models. Genotype embeddings also
hold promise for creating sharing data while preserving sub-
ject anonymity: we show that they retain substantial predic-
tive power even after anonymization by adding Gaussian
noise to each dimension.
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1 Introduction
At 3 billion base pairs, the high dimensionality of the hu-
man genome presents challenges in build predictive models.
Genomic data, considering as a matrix, yields more SNPs
(features) than there are subjects (rows) thus making it diffi-
cult to avoid overfitting. Each person is uniquely identifiable
from their DNA, which makes it difficult to anonymize this
data when sharing with biomedical research community.
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In this paper, we investigate the question of how best
to construct compressed representations (embeddings) of
genome-level data which are (1) compact enough to form
useful features, even for modest sample sizes, and (2) provide
representations that preserve privacy, so one cannot expand
the representation to identify an individual.

Our major contributions in this paper are:
1. Methods for Constructing Low-Dimensional Genotype Em-
beddings –We investigate several design decisions in creating
genotype embeddings. These include encoding heterozygos-
ity, representing major/minor alleles, haplotype-sensitive
chromosome partitioning, different matrix representations
and dimensionality reduction techniques. We show that i)
Hardy-Weinberg Equilibrium (HWE) [6] Principal Compo-
nent Analysis (PCA) substantially outperforms traditional
PCA on predicting a range of phenotypes ii) selection tech-
niques based on genome-wise association studies (GWAS)
are substantially more effective at capturing medical pheno-
types but not ethnicity.
2. Predicting Medical Phenotypes from Genotype Embed-

dings – We study the power of genotype embeddings on a
cohort of 20,000 people and over 5,000 different phenotypes
fromUK-Biobank [4].We demonstrate that embedding-based
models yield an average F-score of 0.605 on a test of ten phe-
noypes versus 0.339 for the baseline models.
3. Privacy-Preserving Genotype Embeddings – We demon-

strate that privacy guarantees for the embeddings can be
provided by adding Gaussian noise to the dimensions of the
embedding such that (a) the nearest neighbor to the noisy
representation is unlikely to be the original subject, while (b)
preserving much of the predictive power of the uncorrupted
embeddings.

2 Methods

2.1 Data
Our data is composed of 805,426 biallelic autosomal vari-

ants for of 19,831 subjects in UK-Biobank [4]. Each variant
corresponds to a genomic locus and is composed of a num-
ber of alleles (ploidy). The calls in our data are diploid with
two alleles at a call. Each of the two alleles correspond to
the two chromosomes, one from each parent. Furthermore,
each variant also has corresponding major/reference and
minor/alternate alleles, as per a genome assembly. Here, we
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Figure 1. Schematic overview of the evaluation framework for classification

use the genome assembly GRCh37 as reference. For each sub-
ject, we had 4926 phenotypes including medical and socio-
economic information.
2.2 Embeddings Methods

Our embedding methods are defined by a mix of matrix op-
erations, sequence preprocessing, and genome partitioning
methods. We outline the space of design decisions below.

2.2.1 Genome Sequence Processing In order to embed
the genotype data into lower dimensions, we first need to
convert it into a numerical representation. Almost all en-
codings are based primarily on two properties of the vari-
ants: 1) If the two alleles are identical or not (homozygous
/ heterozygous) 2) If the alleles match the reference or not
(major/minor allele). Because of these two binary properties,
most encodings are at least two bits. In our experiments, we
focus on two encodings: i) SparSNP [2] encoding both cases
of heterozygosity ii) count of minor alleles.

2.2.2 Base selection In evaluating various embedding
techniques on the genotypic data, we try the following fea-
ture selection strategies to remove any irrelevant bases.
Entropy selected array –We removed SNPs that were likely
to be erroneous reads, and those which were found to be
either the same for most subjects (entropy < 0.1) or had too
much variance (entropy > 0.9) .
GWAS Catalog selected array – Genome-Wide Association
Studies (GWAS) catalog [3] is a public available database of
SNP-trait associations, composing of many individually pub-
lished genome-wide association studies. Here we use GWAS
catalog as a feature selection tool for our models, retaining
only SNPs found in previously published work in the GWAS
catalog. We use v1.0 of the catalog with results from 4188
publications reporting 214,295 associations on 133,651 SNPs
with 4662 phenotyes/disease/traits.
Full SNP array – In addition to employing the above out-
lined strategies for base selection, in our experiments, we
also used the full SNP array for comparison.

2.2.3 Chromosome partitioning
Haplotype-based partitioning – The haplotype boundaries
are identified using recombination hotspots in terms of a

unity for measuring genetic linkage (centimorgans). Chro-
mosomes were partitioned into haplotypes with a threshold
of ≥ 100 centimorgan using values from Phase II HapMap [5].
Equal partitioning – Principal Component Analysis (PCA)
using Singular Value Decomposition (SVD) is applied on
each individual𝑚 ×𝑛 matrix where n is the number of SNPs
in the chromosome. For each chromosome (25 in total, chro-
mosome 1-22, MT, X, Y), 𝑘 top principal components are
concatenated together to make the final𝑚 × (25 ∗ 𝑘) dimen-
sional embeddings.

2.2.4 Matrices In addition to embedding the 𝑛 ×𝑚 geno-
type matrix directly, we alternatively tried converting it into
a dense intermediary 𝑛 × 𝑛 matrix first and then embedding
that into𝑚 × 𝑑 dimensions. We tried the following two in-
termediary representations:
Pairwise Hamming Distance matrix – We use hamming
distance to compute pairwise distance between all subjects
based on the binary representations of their genomic se-
quence encoding and base selection. This 𝑛 × 𝑛 matrix is
then reduced using a variant of PCA, and the top 𝑘 principal
components are concatenated to form the embeddings.
Genetic relatedness matrix (GRM) – The genetic relation-
ship matrix (GRM)𝐺 encodes genetic correlation between
each pair of samples. It is defined by 𝐺 = 𝑀𝑀𝑇 where𝑀 is
a standardized version of the genotype matrix.

2.2.5 Matrix compression For the final matrix compres-
sion, we use PCA [1] and Hardy-Weinberg normalized PCA
(HWE-PCA) [6], a specialized version of PCA for statistical
genetics based on projecting samples to a small number of
ancestry coordinates.

3 Evaluation
In this study, we restrict ourselves to the problem of binary
classification for each of the 5,034 phenotypes. Without bi-
narization of the ordinal variables, evaluation of ordinal and
nominal variables would have been inconsistent and incom-
parable. Since age and sex can be a strong confounding factor
for most phenotypes, we corrected for age and sex by using
them as features to both our genotype and baseline classi-
fier. For our baseline model, we used a Logistic Regression
classifier with the features age, sex and randomly shuffled
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Table 1. A comparative evaluation of different genotype embeddings revealed that haplotype and whole-genome partitioning,
full SNP array and HWE PCA improve classification scores for ethnicity. On the other hand, chromosome level partitioning
and GWAS SNPs are better suited for prediction of medical conditions. Hamming Distance matrix and/or removing high/low
entropy SNPs had no affect. Minor Allele Count was used for encoding of whole genome embeddings and SparSNP [2] for rest.

Ethnicity Medical Conditions

Base
Selection Partitioning Matrices Matrix

Compression

Asian
or

Asian
British

Black
or Black
British

Other
ethnic
group

Diabetes Cancer Bipolar
Disorder

Full SNPs Per chromosome Hamming SVD/PCA 0.71 0.38 0.17 0.07 0.1 0
Entropy Haplotype Genotype SVD/PCA 0.77 0.54 0.2 0.05 0.1 0
Full SNPs Haplotype Genotype SVD/PCA 0.75 0.56 0.2 0.05 0.1 0
Entropy Per chromosome Genotype SVD/PCA 0.64 0 0.1 0.06 0.1 0
Full SNPs Per chromosome Genotype SVD/PCA 0.62 0 0.09 0.06 0.11 0.1

GWAS SNPs Whole genome GRM SVD/PCA 0.71 0.54 0.3 0.29 0.24 0.12
Full SNPs Whole genome GRM HWE PCA 0.97 0.61 0.54 0.1 0.09 0.05

GWAS SNPs Whole genome GRM HWE PCA 0.93 0.61 0.4 0.32 0.54 0.13

Table 2. Genotype-phenotype linkages identified with strong statistical significance (**; p-value ≤0.001, bonferroni corrected)
across different phenotype categories.

Description Model
recall

Baseline
recall

Model
precision

Baseline
precision

Model
acc

Baseline
acc

Model
f1

Baseline
f1

Body Mass Index 0.737 0.504 0.579 0.377 0.704 0.507 0.649 0.431
Body Weight Percentage 0.734 0.49 0.579 0.369 0.701 0.496 0.648 0.421

Cholesterol and other meds 0.954 0.436 0.123 0.037 0.746 0.555 0.218 0.068
Genetic kinship 0.956 0.458 0.123 0.039 0.747 0.562 0.219 0.072

Genetic relatedness 0.957 0.389 0.122 0.033 0.745 0.558 0.217 0.061
Trauma 0.999 0.47 0.999 0.438 0.999 0.464 0.999 0.453

Depression 0.638 0.475 0.408 0.324 0.574 0.498 0.498 0.385
Assessment Center 0.998 0.512 0.793 0.518 0.871 0.528 0.884 0.515
Ethnic: White vs. rest 0.886 0.522 0.997 0.456 0.95 0.525 0.938 0.486
Ethnic: Black vs. rest 0.999 0.514 0.999 0.479 0.999 0.505 0.999 0.496

genomic features, to ensure parity in number of features
and their respective distributions. In order to evaluate how
impressive the results of our genotype classifier were from
baseline, we report statistical significance scores.
We create 20 different splits for subjects into 20 different

sets of training and testing subjects, using the train:test ratio
of 75:25. For each split, we trained classifiers on the training
subjects and tested on the testing subjects, computing f1
score for each one. Using the two f1-score distributions, each
with 20 constituent data points, one for ourmodel and one for
the baseline, we performed simple t-tests.We use this p-value
and its associated t-test statistic as the two primary measures
of quality of our models. We used Bonferroni correction to
correct for family-wise error rates.

4 Results

4.1 Design choices in genotype embeddings
Table 1 present the results of our experiments in terms

of prediction quality (F1 Scores) with respect to the differ-
ent embedding design choices. Our results show that us-
ing GWAS SNPs for base selection significantly improves
prediction of medical conditions but not ethnicity. On the
contrary, HWE normalized PCA significantly improves eth-
nicity prediction over regular PCA. The Hamming distance
pairwise comparison fails to significantly improve genotype
embeddings. Partitioning on recombination hotspots (hap-
lotypes) improves prediction of ethnicity as compared to
equi-partitioning of chromosomes. Partitioning on chromo-
somes improves prediction of medical conditions. Removing
SNPs with extremely high or extremely low entropy has little
effect on prediction scores.
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Figure 2. Effect of embedding dimensionality on predic-
tion. Increasing the length of the embeddings improves the
prediction of ethnicity across different categories, but the
improvements taper off around 𝑑 = 100.

4.2 Dimensionality of Embeddings
Figure 2 gives results for prediction of ethnicity using dif-

ferent lenghth of the genotype embeddings learned using
GWAS SNPs and HWE-PCA. Increasing the length of the
embeddings, upto a point, improves the prediction of ethnic-
ity across different categories, tapering off around 𝑑 = 100.
The inflection point seems to be consistent across different
ethnic labels.
4.3 Privacy Preserving Embeddings
Genotype embeddings for a subject can be anonymized

by adding Gaussian noise N(` = 0, 𝜎 = standard deviation
of each dimension) while still preserving information of the
phenotypes. We measure the privacy preservation by com-
paring the nearest-neighbors in the embedding space before
and after anonymization. Figure 3 (top) shows that beginning
at aroundN(0, 𝜎) of noise, a subject’s 50 dimensional embed-
dings become indistinguishable from an average 2-5 nearest
neighbors. At N(0, 1.2𝜎), this rank similarity decreases so
as to make the subject anonymous among a group of 100.
Meanwhile, for the same 50-length embeddings, it takes a
higher amount of noise to adversely impact the prediction
score of ethnicity. The longer the length of the embeddings,
the more the noise needs to be added, as Figure 3(top) shows,
around 1.5 𝜎 of each dimension of Gaussian noise, the near-
est neighbor to the noisy representation is unlikely to be the
original subject, while Figure 3(bottom) demonstrates that at
the noisy level of 1.5 𝜎 , it preserves much of the information
about the subject’s broader ethnicity.
4.4 Phenotype prediction

A sample of phenotypes of interest and their correspond-
ing prediction statistics are shown in Table 2. Our concise
100-dimensional embeddings were able to predict some key
medical conditions such as mental health variables including
depression and trauma as well as Body Mass Index (BMI) and
Body weight percentage. If the subject had been prescribed
any medication for cholesterol, blood pressure or diabetes,
then that information was also preserved. Altogether, our
results serve as evidence of preservation of wide diversity
of traits and phenotypes in a drastically smaller number of
dimensions in our genotype embeddings.

Figure 3. Anonymizing genotype embeddings by adding
Gaussian noise to each dimension. The embeddings prove
more robust to added noise as dimensionality increases. The
nearest neighbor to the noisy representation becomes in-
creasingly unlikely to be the original subject (top), while
even at the noise level of 1.5 𝜎 , it still preserves much of the
predictive power of the embedding (bottom).

5 Conclusion
In this work, we construct low-dimensional embeddings of
large-scale genotyping data, reducing genotypes of hundreds
of thousands of SNPs to embeddings on the order of 10-100
dimensions. We demonstrate that these embeddings retain
a lot of predictive power while also preserving privacy. For
future work, we envision focusing on theoretical bounds
for the pareto optimal embedding sizes as well as looking at
finer resolution of genomic conservation beyond haplotypes.
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