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Psychiatric disorders are thought to result from dysregulated1

brain circuits, yet human neuroimaging currently lacks stan-2

dardized methods for quantifying neural dysregulation. Here,3

we present a scalable framework for extracting fMRI-derived4

(generative) control circuits, then use circuit trajectories to es-5

timate their control error. Using synthetic circuits, we first6

demonstrate that our framework accurately identifies each cir-7

cuit’s architecture and models its dynamics by estimation of8

transfer functions. As a use case, we then apply the frame-9

work to human task-based functional MRI data (UK Biobank,10

N=19,831). In a purely data-driven manner, without priors,11

our framework identified thalamus-linked prefrontal-limbic and12

ventral stream subcircuits, selectively engaged during sensori-13

motor processing of affective and non-affective stimuli. Finally,14

we demonstrate that circuit-wide dysregulation, defined by de-15

gree of drift from healthy trajectories, tracks symptom sever-16

ity for neuroticism (ventral subcircuit), depression (prefrontal-17

limbic subcircuit), and bipolar disorder (full circuit).18

brain | circuit | dysregulation | fMRI | control system | trajectory | computa-19

tional psychiatry| generative model20
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Introduction22

Psychiatric disorders are commonly understood to reflect23

dysregulation of one or more brain circuits. Yet, clinical24

neuroscience generally conflates the term circuits with co-25

activated brain regions, the latter of which are more accu-26

rately described as networks. Because neuroimaging-derived27

networks are normally defined by linear regressions (y =28

b0 + b1x1 + ...), they are capable of reliably modeling only29

a very narrow range of topologies, in which one or more in-30

puts leads to a single output (1). This limitation excludes the31

capacity for positive and negative feedback loops, as required32

for regulation.33

To quantify brain circuit dysregulation we exploit the gen-34

erative aspect of data-derived control circuits, which allows35

us to predict how a circuit’s output time series will evolve36

over time. In a classic engineering control application, such37

as autopilot (Figure 1a), a vehicle corrects for deviations from38

its desired trajectory through negative feedback (e.g., as the39

vehicle starts to drift to the right, the control circuit corrects40

the drift by steering to the left). As such, the difference be-41

tween the autopilot’s actual versus desired trajectories pro-42

vides a measure of its control error, or dysregulation (Fig-43

ure 1b). Here, we use trajectory drift as a measure of control 44

error. We calculate circuit-wide dysregulation across fMRI- 45

derived control circuits, and demonstrate its clinical utility as 46

applied to three psychiatric use cases: neuroticism, depres- 47

sion, and bipolar disorder (See Methods for definitions). 48

In developing this framework, we started from several 49

desiderata: the ability to test homeostatic regulation in re- 50

sponse to driving inputs (perturbation), a fundamental re- 51

quirement of control theory(2–4); the ability to conduct 52

whole-brain circuit discovery, free of priors; and the ability to 53

scale, thereby leveraging the marked increase in both mega- 54

scale neuroimaging datasets made possible through open- 55

science initiatives, as well as high resolution, fine-granularity 56

parcellations of the brain. 57

To date, the only standardized method capable of esti- 58

mating fMRI-derived generative circuits is Dynamic Causal 59

Modeling (DCM) (5). DCM is normally used to estimate cir- 60

cuit architecture, in the form of a directed, weighted graph. 61

However, circuit architecture by itself is not sufficient to 62

provide quantitative estimation of control parameters such 63

as dysregulation. Moreover, DCM’s computationally ex- 64

pensive algorithms, even for faster (resting-state only) vari- 65

ants such as spectral DCM (6), result in convergence times 66

so lengthy that they remain impractical for extracting cir- 67

cuits from mega-scale datasets, using purely data-driven ap- 68

proaches (>100 brain regions), with short (e.g., 5 minute) 69

time series. More recent (driving input-compatible) variants 70

such as regression DCM (rDCM) (7) and sparse rDCM (8) re- 71

place the hemodynamic forward model with a fixed hemody- 72

namic response function (HRF). As a result, they fail to allow 73

for heterogeneity in the blood oxygenation level dependent 74

(BOLD) signal across brain regions and individuals (9, 10). 75

This biophysical constraint can lead to confounds, particu- 76

larly when applied to neurodevelopmental, aging, and patient 77

populations (11, 12). 78

Thus, we introduce a generalized framework based on state 79

space systems that bridges the gap between network the- 80

ory and control theory, with the scalability required to mine 81

mega-scale datasets such as UK Biobank (N=19,831) (13). 82

First, we confirm that using time-series to estimate systems 83

of differential equations without biophysical constraints still 84

permits recovery of complex causal relationships and feed- 85

back loops that characterize brain circuits. Using synthetic 86

data, we generate canonical circuit motifs to simulate circuits 87
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Fig. 1. Trajectory Drift as a Measure of Feedback Control Error, and Thus Circuit Dysregulation. (a) In a classic engineering control application, such as autopilot, a

vehicle corrects for deviations from its desired trajectory through negative feedback. As such, the difference between the autopilot’s actual versus desired trajectories provides

a measure of its control error, or dysregulation. (b) As per the autopilot example, we use trajectory drift as control error to calculate dysregulation across fMRI-derived control

circuits, and demonstrate its application for three psychiatric use cases: neuroticism, depression, and bipolar disorder (c) Schematic of the pipeline for the discovery of circuit

architecture and dynamics from human fMRI and simulated time series, using Time-Varying Autoregressive Model with Exogenous Inputs (TVARX) and other state space

models. We use trajectory drift between predicted and actual trajectories to quantify circuit dysregulation across subjects with varying degrees of severity for psychiatric

symptoms.

with varying architectures and dynamics to test our frame-88

work’s ability to recover both (Figure 1c top row). Second,89

having validated the framework on synthetic data, we then90

apply the framework to UK Biobank fMRI data. Using tasks91

designed to dissociate processing of affective versus non-92

affective stimuli (14, 15), we extract the control circuit selec-93

tively engaged by each. Third, from each individual’s circuits94

we calculate the circuit’s trajectory control error, which quan-95

tifies its degree of dysregulation. From these control errors,96

we statistically test the relationship between circuit-wide dys-97

regulation and psychiatric symptoms (Figure 1c bottom row).98

Results99

Recovering circuit motifs from dynamic outputs100

We first evaluate our framework using circuit motifs. Five101

thousand synthetic circuits are constructed by connecting102

nodes, each with its own transfer function, according to three103

basic motifs: series, parallel and feedback. These motifs are104

then combined in a modular fashion, to create larger circuits105

of varying levels of complexity (See Methods, Figure 4a).106

The transfer functions used in our experiments were de-107

signed to resemble the hemodynamic response function108

(HRF) (16) extensively used to model blood oxygen level109

dependent (BOLD) (17) signals measured using functional110

magnetic resonance imaging (fMRI) (Figure 4b). The HRF111

function is parameterized by response height, time-to-peak112

and full-width at half-max. In our simulations, each node had 113

different parameter values for the HRF, as previously shown 114

for human data (9, 12). 115

The transfer function for each motif is an algebraic com- 116

bination of node transfer functions (Figure 4c) Each motif 117

also had an inverse variant. Serial and parallel connections 118

each had both excitatory and inhibitory variants, while feed- 119

back loops had both positive and negative variants. The in- 120

verse variants are obtained by inverting the sign of their cor- 121

responding algebraic expressions (See Methods, Figure 4c). 122

Note that although the node transfer functions are parameter- 123

ized HRFs, successive connections and their corresponding 124

algebraic expressions applied to HRFs can result in complex 125

transfer functions. 126

We evaluate the ability to recover the canonical circuits 127

both in terms of architecture and trajectory dynamics using 128

a range of models with varying levels of complexity (Fig- 129

ure 2a). All of these models, with the exception of DCM, 130

can be generalized by our state space system equations (See 131

Methods, equation 3, Table 2). A detailed discussion regard- 132

ing comparison with DCM is presented in a subsequent sub- 133

section. 134

The architecture is estimated through classifying relation- 135

ship between each pair of nodes. For each node, parameters 136

of its state space model are learned against time series of all 137

other nodes (details in Methods). Based on the learned feed- 138

forward matrix, a time-varying causality graph is established 139
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Fig. 2. Using Synthetic Data, we Compare the Performance (Accuracy and Speed) of System Identification Algorithms in Recovering Control Circuit Architecture

and Dynamics (a) In this work, we fill the gap in literature between under-specified models that model networks, rather than circuits, and over-specified models that cannot

scale computationally and therefore fail to extract circuits for large number of regions using shorter (∼5 minute) time series. (b) Accuracy scores for classification of 5000

simulated circuits and their components, including correct classification of no connection: φ) using different state space models discussed in Table 2. TVARX performed

best at recovering the original circuit topology (c) AIC scores across models with respect to order of autoregressive component, which accounts for increasing complexity.

TVARX performs best even when penalized for having the larger number of parameters. (d) Comparison of TVARX with (stochastic) Dynamic Causal Modeling (DCM)

on human task-based fMRI. DCM fails to converge for shorter (∼5 minute) fMRI time series as well as for larger number of nodes. sFCN=static Functional Connectivity

Networks, X=eXogneous inputs, AR=AutoRegressive, dFCN=dynamic Functional Connectivity Networks, TVX=Time Varying with eXogenous inputs, ARX=AutoRegressive

with eXogenous inputs, TVARX=Time Varying AutoRegressive with eXogenous inputs, DCM=Dynamic Causal Modeling.

(Figure 4e) and Eulerian/elementary circuits are identified.140

The connections of these circuits are further classified into141

one of the four connection types.142

Figure 2b provides the accuracy scores for each model with143

respect to classification of each connection type. The absence144

of DCM in Figure 2b reflects the fact that it failed to converge145

and thus did not yield meaningful results for our synthetic146

circuits. The Time-Varying autoRegressive with eXogenous147

inputs (TVARX) model outperforms other, simpler, models148

in identifying each connection type and thus recovering the149

overall circuit architecture.150

To account for varying model complexities, in our evalua-151

tions for predicting trajectories we compute the Akaike Infor-152

mation Criterion (AIC) for different models as we increase153

the autoregressive order (Figure 2c). Only models that in- 154

clude past states were included in these comparisons, as ma- 155

jority of parameters are part of the autoregressive component 156

and only these models are capable of generating future pre- 157

dicted non-linear trajectories. Here again, the TVARX model 158

outperforms other models we evaluated in our experiments, 159

even after accounting for the larger number of parameters. 160

Data-Driven Circuit Discovery Using Human fMRI 161

Participants from UK-Biobank (N=19,831) (13) were 162

scanned while engaged in a task designed to elicit affective 163

and non-affective sensorimotor processing. These were used 164

to identify circuits selectively activated for each type of pro- 165

cessing. 166
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Task Design167

During fMRI scans, participants were administered the Hariri168

faces/shapes "emotion" task (14, 15), as also implemented in169

the Human Connectome Project (HCP) (18) but with shorter170

overall duration and hence fewer total stimulus block repeats.171

Participants were presented with alternating blocks of trials172

with visual stimuli consisting of human faces and geomet-173

ric shapes (circles, ellipses), with brief periods of rest in be-174

tween. For facial expressions, 12 different images were used:175

six of each gender and affect (angry or fearful), all from a176

standardized set of pictures of facial affect (19). In each trial,177

either three faces or three shapes were presented in a triangu-178

lar configuration: one centered above the other two. The par-179

ticipants were asked to indicate, by pressing a button, which180

stimulus on the bottom row matched the stimulus on the top181

row. The response triggered either the next trial or an eight182

second period of rest. The total length of the scan for each183

subject was 4 minutes; we obtained data for N=19,831 par-184

ticipants. The data were acquired on harmonized Siemens185

3T Skyra scanners. The scans are 2.4mm isotropic with TR186

of 0.735s and 332 frames per run. Each subject had one run.187

The parcellation used in our experiments was provided by188

UK Biobank and included 139 regions of interest (ROIs).189

These ROIs are defined in MNI152 space, combining par-190

cellations from several atlases: the Harvard-Oxford cortical191

and subcortical atlases (20, 21) and the Diedrichsen cerebel-192

lar atlas (22). Further information for the dataset is provided193

in Methods.194

Comparison of TVARX with Dynamic Causal Modeling195

In Figure 2d, we present a comparison between TVARX and196

DCM with respect to training time and corresponding train-197

ing error. Even for small circuits (nodes ≤ 30), DCM fails198

to converge for time series of 4 minutes (332 timepoints) as199

available in UK-Biobank. As shown, not only does TVARX200

converge considerably faster, but training error for DCM does201

not decrease monotonically, indicating failure to converge.202

This is not surprising, since DCM is designed to be203

hypothesis-driven, testing competing models from a pre-204

specified set of nodes(6). Several competing hypotheses that205

constitute a model space are specified in the form of sub-206

graphs, which are then compared using Bayesian model se-207

lection. Increasing the number of nodes is challenging be-208

cause the number of extrinsic (between-node) connections or209

edges increases with the square of the number of nodes. This210

can lead to models with an enormous number of free param-211

eters and profound conditional dependencies among the pa-212

rameters. Furthermore, the computational time required to213

invert these models grows exponentially with the number of214

free parameters. More recent variants have been developed215

to successfully address this issue, but were not compared216

to TVARX because of other limitations: spectral DCM is217

not appropriate for measuring homeostatic regulation in re-218

sponse to driving inputs, and regression/sparse DCM (7, 8)219

constrains the HRF in ways that can introduce confounds in220

clinical populations (9–12).221

Prefrontal-Limbic and Ventral Stream Subcircuits 222

In spite of the fact that no regions or connections were pre- 223

specified, our data-driven system identification methods were 224

highly successful in accurately identifying linked subcircuits 225

(Figure 3), each of which was consistent with independently 226

validated experiments in the rodent, macaque, and human. 227

Each subcircuit was uniquely specified with respect to its 228

showing the largest absolute D value in response to its re- 229

spective stimulus-type (See Methods 5). 230

As per the translationally-established prefrontal-limbic 231

subcircuit (PFLC) for processing of affective stimuli, in 232

which the thalamus provides a hub connecting a "low road" 233

pathway to the amygdala and a "high road" pathway to the or- 234

bitofrontal cortex (OFC) and ventromedial prefrontal cortex 235

(vmPFC)(23–26), our model recovered all key components 236

and their relationships (Figure 3, red). 237

Likewise, for processing object form and recognition of 238

non-affective stimuli, the ventral stream subcircuit has been 239

shown to originate in the thalamus, project to V1-V2-V4, ter- 240

minating in the inferior temporal gyrus (ITG), then progress 241

to the inferior frontal gyrus (ITG, specifically the ventro- 242

lateral prefrontal cortex) and then to the orbitofrontal cor- 243

tex/ventromedial prefrontal cortex (vmPFC)(27–29). Our 244

model was able to recover nearly all of ventral stream (V1- 245

V2-V4 were implicit in connecting the thalamus to the ITG), 246

including "top-down" feedback (30) from the inferior frontal 247

gyrus (IFG) to the inferior temporal gyrus (ITG) (Figure 3, 248

blue). 249

In the context of psychiatry it is important to note that, 250

while in human neuroimaging the ventral stream’s (VS) input 251

to the IFG has most been most often studied in the context 252

of disambiguation of semantic meaning(31, 32), this same 253

subcircuit also disambiguates perceptual meaning in the con- 254

text of ambiguous threat in assessing risk ("threat general- 255

ization"). Indeed, it is dysregulation of the VS subcircuit–in 256

response to non-affective, rather than affective stimuli–that 257

we have previously shown (in four independent datasets, to- 258

taling N=226) to track the spectrum of trait to clinical anxiety 259

(33), which most closely relates to the UK Biobank variable 260

"neuroticism." 261

The two subcircuits were found to be mutually interacting 262

with each other, with the pivot point centered at the thalamus, 263

a known neuroanatomical hub shared by both circuits(29). 264

Our system identification methods identified the thalamus to 265

have two inputs providing negative feedback, one from hip- 266

pocampus for the prefrontal-limbic subcircuit and one from 267

inferior frontal gyrus for the ventral stream subcircuit; i.e. 268

Hippocampus
−

−−−−→
P F LC

Thalamus
−
←−−
V S

IFG1

1Notation: Region A
connectiontype

−−−−−−−−−−−→

circuit
Region B. Excitatory connections

are denoted by + and inhibitory connections by −. Direction of the arrow

head represents indicates directionality of causation.

4 | bioRχiv Sultan SF et al. |



Fig. 3. Purely Data-Driven System Identification Accurately Recovers Known Subcircuits, Whose Degree of Dysregulation is Linked to Psychiatric Symptom

Severity.(a-b) Without including any pre-specified information regarding regions or connections, our data-driven methods were highly successful in recovering two known sub-

circuits, interacting and linked via the thalamus, that have been independently validated in the rodent, macaque, and human (details in Discussion). (c) Results show selective

dominance of each subcircuit with changing stimuli: the prefrontal-limbic subcircuit selectively engaged during processing of affective (faces) stimuli while the ventral stream

subcircuit selectively engaged during processing of non-affective (shapes) stimuli (the y-axis is the relative dominance of one circuit versus the other, defined as absolute sum

of relevant entries of the feedforward matrix D in our state space equation (Eqn. 3). For prefrontal-limbic subcircuit M = {thalamus,hippocampus,OF C,vmP F C}

and for ventral stream subcircuit M = {thalamus,IT F,IF G} (d) We use trajectory drift (measured as the mean squared error between actual and predicted trajectories)

as a measure of feedback control error, or dysregulation, of each subcircuit. Dysregulation of the prefrontal-limbic subcircuit was measured as the error in the thalamus

trajectory as predicted from negative feedback by the hippocampus (hippocampus
−

−→ thalamus). Dysregulation of the ventral stream was measured as error in the thalamus

trajectory as predicted from negative feedback by the inferior frontal gyrus (inferior frontal gyrus
−

−→ thalamus). Trajectory drift of the ventral stream subcircuit tracks severity

of neuroticism, while trajectory drift of the prefrontal-limbic circuit tracks severity of depression. For bipolar disorder, the thalamic trajectory could not be predicted from either

hippocampal or IFG trajectories, and thus reflects dysregulation of the full circuit. This could be due to either more systemic problems with feedback across both circuits, or

that the full circuit is receiving dysregulated inputs from another, different, circuit not identified by these tasks. Bonferroni corrected ⋆P < 0.05; ⋆⋆P < 0.01

Similarly, the thalamus has two outputs, both excitatory269

connections, one to hippocampus in the PFLC and the other270

to ITG in VS i.e.271

Hippocampus
+

←−−−−
P F LC

Thalamus
+
−−→
V S

ITG

In this way, the thalamus completes one of two competing272

negative feedback loops, one for each of the two identified273

subcircuits. 274

We measure the relative dominance of one subcircuit ver- 275

sus the other at any point in time as the absolute sum of rele- 276

vant entries in the time-varying feedforward matrix Dt in our 277

state space equation (Methods, Equation 3). Note that each 278

entry in D
(a,b)
t represents the causal dependence of trajectory 279

of b on trajectory of a (i.e. effective connectivity a−→ b). 280
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Our results show these two competing feedback loops to281

be alternatively dominating in strength based on the stimuli282

during the scan for each subject (Figure 3b). The prefrontal-283

limbic subcircuit was found to be the dominant loop at points284

in time when the subjects were tasked with matching facial285

stimuli of angry or fearful affect. The opposite was observed286

for ventral stream subcircuit, which was the dominant feed-287

back loop when subjects were tasked with matching geomet-288

ric shapes.289

Trajectory Drift as Dysregulation290

We use trajectory drift as measure of circuit-wide control er-291

ror, and therefore dysregulation. This drift is measured as292

the mean squared error between the actual trajectories and293

the predicted trajectories. We further compare these varying294

levels of dysregulation with the severity and type of psychi-295

atric symptoms and diagnoses. These include scored degrees296

of neuroticism (a measure of stress vulnerability, anxiety),297

depression, and diagnosis of Type 1 and 2 bipolar disorders298

(definitions in Methods).299

To estimate dysregulation of the PFLC and VS subcircuits300

identified for N=19,831 subjects, we use the same task fMRI301

scans. However, unlike our identification of circuits in the302

previous section, here we measure dysregulation across the303

entire scan, independent of the design matrix.304

Our results show marked association between greater dys-305

regulation of specific subcircuits and the severity of the psy-306

chiatric symptoms (Figure 3c).307

Since the thalamus was identified as a pivot point for308

switching between the two subcircuits, in determining which309

of the two competing feedback loops dominates the system,310

we specifically focused on regulation of the thalamus; i.e.311

prediction of thalamus’s trajectory as a function of negative312

feedback by either the hippocampus (for PFLC) or the infe-313

rior frontal gyrus (for VS).314

Our results show more severe neuroticism to be associ-315

ated with greater trajectory drift (control error) in the ven-316

tral stream subcircuit (level 0 [N=3070] vs. 6 [N=1368]317

∗∗p ≤ 1e–5; level 6 [N=1368] vs. 12 [N=281] ∗∗p ≤ 2e–9)318

(Figure 3c top), specific to weakened negative feedback from319

the inferior frontal gyrus (IFG) to the thalamus (IFG
−
−→ Tha-320

lamus). This inhibitory connection is critical to stable regu-321

lation of the ventral stream and was observed to in turn result322

in greater dysregulation downstream with respect to thalamic323

outputs to the inferior temporal gyrus (ITG) (Thalamus
+
−→324

ITG).325

In contrast, our results show more severe depression to be326

associated with greater trajectory drift (control error) in the327

prefrontal-limbic subcircuit (HC [N=3932] vs. Single Major328

Episode [N=406] ∗p≤ 0.003; Single Major Episode [N=406]329

vs. Moderate [N=763] ∗∗p ≤ 2e-4; Moderate [N=763] vs.330

Severe [N=353] ∗∗p ≤ 8e-6) (Figure 3c center), specific to331

weakened negative feedback from the hippocampus to the332

thalamus (Hippocampus
−
−→ Thalamus). Note that this rela-333

tionship is itself dependent on the excitatory inputs from the 334

thalamus to the hippocampus (Thalamus
+
−→ Hippocampus) 335

completing the negative feedback loop. 336

In the case of bipolar disorder, the thalamus was observed 337

to be dysregulated with respect to both of its inhibitory in- 338

puts (Hippocampus
−

−−−−→
P F LC

Thalamus
−
←−−
V S

Inferior Tempo- 339

ral Gyrus) with greater dysregulation observed for subjects 340

with Biopolar I Disorder compared to subjects with Bipolar 341

II Disorder (Figure 3 bottom) (HC [N=3932] vs. Bipolar I 342

[N=28] ∗p ≤ 1e-8; Bipolar I [N=28] vs. Bipolar II [N=26] 343

∗p ≤ 0.0005). In the case of Bipolar Disorder I & II, the 344

thalamic trajectory was observed to drift significantly from 345

its predicted trajectory, but the system was not dominated by 346

either of the two competing feedback loops. This could be 347

due either to more systemic problems with feedback across 348

both circuits, or that the full circuit is receiving dysregulated 349

inputs from another, different, circuit not identified by these 350

tasks. 351

Finally, we compare trajectory drifts of discovered cir- 352

cuits with more conventional methods currently prevalent in 353

clinical neuroscience (Table 1). These standard methods in- 354

clude Stochastic DCM, correlation-based functional connec- 355

tivity (34), and activation based Generalized Linear Models 356

(GLM) (35). Note, however, that different methods answer 357

fundamentally different (if complementary) questions: DCM 358

and Trajectory Drift capture circuit-wide dynamics, func- 359

tional connectivity provides the strength of (undirected) sig- 360

naling across pairs of regions, and GLM provides activation 361

of individual regions. To allow for a more direct compari- 362

son of our circuit-wide measure to activation and networks, 363

in Table 1, we report results for the subcircuit regions and 364

connections that we identified as tracking symptom sever- 365

ity. Our results show that modeling psychiatric disorders in 366

terms of circuit dysregulation achieves markedly greater de- 367

tection sensitivity across all three sets of psychiatric symp- 368

toms. Beyond identification of differences, however, the most 369

important advantage of our method is that it uses data-driven 370

methods to construct generative computational neuroscience 371

models that explicitly consider homeostatic regulation across 372

negative feedback loops. This has the potential to allow hy- 373

potheses regarding dysregulation across psychiatrically rele- 374

vant circuits to be rigorously specified and empirically tested. 375

Discussion 376

In this work, we present a scalable fMRI data-driven tech- 377

nique that allows for construction of generative circuits in the 378

human brain, and provides a quantitative measure–trajectory 379

drift–of their control error, or circuit-wide dysregulation. 380

We demonstrate the effectiveness of our technique in re- 381

covering artificially generated circuits of varied architectures 382

and transfer functions. To demonstrate the applicability of 383

the technique to computational psychiatry, we use large- 384

scale fMRI data to identify two subcircuits and demonstrate 385

that their dysregulation tracks with symptom severity with 386
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Neuroticism Score Depression Bipolar Disorder

0

(N=3070)

vs.

6

(N=1368)

6

(N=1368)

vs.

12

(N=281)

HC

(N=3932)

vs.

Single

Major

Episode

(N=406)

Single

Major

Episode

(N=406)

vs.

Moderate

(N=763)

Moderate

(N=763)

vs.

Severe

(N=353)

HC

(N=3932)

vs.

Bipolar I

(N=28)

Bipolar I

(N=28)

vs.

Bipolar II

(N=26)

DCM Failed to Converge

Hippocampus
−
−→ Thalamus *0.003 **2e-4 **8e-6Trajectory

Drift Inferior Frontal Gyrus
−
−→ Thalamus **1e-5 **2e-9

**1e-8 *0.005

Hippocampus↔ Thalamus 0.06 0.1 *0.001 **1e-4 0.3Functional

Connectivity Inferior Frontal Gyrus↔ Thalamus *0.002 **1e-4 0.12 0.26

GLM Thalamus 0.08 *0.01 0.13 *0.012 0.16 *0.01 0.2

Table 1. Comparison of Trajectory Drift with fMRI Analytical Methods: Dynamic Causal Modeling (DCM), Functional Connectivity, and Activation Based General-

ized Linear Models (GLM). We took a whole-brain purely data-driven approach in identifying circuits for the two circuit-based methods: DCM and Trajectory Drift. Of these,

only Trajectory Drift was able to converge for the parcellation (139 regions of interest) and sample size (UK Biobank N=19,831). For the two subcircuits identified by Trajectory

Drift: Prefrontal-Limbic and Ventral Stream, we then tested how the key regulatory components for Prefrontal-Limbic (negative feedback by the hippocampus) and Ventral

Stream (negative feedback by the inferior frontal gyrus) were interpreted by non-circuit-based methods: GLM and Functional connectivity. For each comparison of psychiatric

variables, we report p-values from statistical significance testing using Welch’s t-test for unequal variances and sample sizes. Bonferroni corrected ⋆P < 0.05; ⋆⋆P < 0.01.

Cells that were not applicable are greyed out.

markedly greater detection sensitivity than standard analytic387

methods.388

FMRI has conventionally been used to either compute389

brain activation maps, as areas of differential hemodynamic390

response, or to quantify pairwise connectivity between brain391

regions using Pearson correlation(36). More recent devel-392

opments in fMRI analyses consider graph-theoretic mea-393

sures (37) and a shift towards dynamic patterns of connectiv-394

ity using time varying connections (38, 39). What all of these395

methods lack, however, is a conceptual and mathematical396

framework for considering the implications of closed feed-397

back loops. Without these, activation maps and connectivity-398

derived networks can suggest the presence of neural circuits,399

but can neither define nor simulate their behavior, which in-400

cludes their regulation. Given the assumption that psychiatric401

disorders are grounded in the failure of circuits to maintain402

homeostatic regulation, the ability to identify trajectories–403

including drift from normative trajectories–is thus an impor-404

tant step in the development of computational psychiatry and405

its characterization of dynamical disease(40, 41).406
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Methods 559

Time Varying AutoRegressive eXogenous (TVARX) 560

Model 561

Functional connectivity network for N regions-of-interest is 562

traditionally defined as an N ×N adjacency matrix A where 563

Ax,y =
cov(X,Y )

σxσy
,A ∈ R

(N×N),x,y ≤N (1)

When time series are normalized (zero mean and unit stan- 564

dard deviation), a common fMRI preprocessing step, the 565

Pearson correlation coefficient is equal to the slope of the 566

regression. Thus resulting in a linear regression model of the 567

form 568

yt = Ax,yx+ bt (2)

Most dynamic variants simply extend this definition by 569

adding an additional temporal dimension resulting in a time- 570

varying adjacency matrix A ∈ R
N×N×T where T is either 571

the length of the time series or the number of sliding time- 572

windows. 573

In this work, we extend this simple prevalent linear model 574

by modeling BOLD time series observed for a brain region 575

using a state space model of the form: 576

yt = Ztαt +Dtut +dt + ǫ

αt+1 = Ttαt +Btut + ct +Rtηt

(3)

where yt refers to the observation vector at time t, ut refers 577

to the input (or control) vector from other regions of the brain, 578

αt refers to the (unobserved) state vector at time t, and where 579

the irregular components are defined as ǫt ∼ N(0,Ht) and 580

ηt ∼N(0,Qt). 581

The remaining variables in the equations are matrices de- 582

scribing the process. The total length of the time series being 583

T, the number of ROIs being N and K being the number of 584

states, their variable names and dimensions are as follows: 585

design Z ∈R
N×K×T , input B ∈R

N×K×T , observation in- 586

tercept d ∈ R
N×T , observation covariance H ∈ R

N×N×T , 587

transition T ∈ R
K×K×T , state intercept c ∈ R

K×T , selec- 588

tion R ∈ R
K×K×T , state covariance Q ∈ R

K×K×T
589

Note that this formulation is a generalized framework with 590

prevailing definitions of static functional connectivity as cor- 591

relations (Dt = Dt+1 ∀t,Zt = O ∀t) and dynamic functional 592

connectivity as time-varying correlations(Zt = O ∀t) as spe- 593

cial cases. Table 2 breaks down existing models and presents 594
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Fig. 4. Inferring Closed-Loop Circuits(a) Standard connectivity ("network") analyses depend upon linear regressions, which are only capable of modeling a very specific

topology: parallel inputs. In contrast to parallel inputs A, most neurobiological circuits of relevance to psychiatry also require serial B and feedback C components, structures

that could lead to an explosion of error propagation using standard statistical methods. (b) Impulse response for two hemodynamic response functions (HRFs) with different

relaxation times and transfer functions. (c) To illustrate how transfer function structure changes with different circuit topologies, we show three transfer functions, each of

which corresponds to a different kind of “motif,” with series, parallel and feedback connections. By using pairs of inputs u and outputs y to obtain their transfer function, we

systematically infer circuit topology. (d) Block diagram representation of state-space equations (e) Dynamic effective connectivity as a time-stamped temporal graph.

Model D (feedforward) T (transition) B (input) Z (design)

Correlations (sFCN / X) Time invariant O O O

Autoregressive (AR) O Time invariant O I

Time-varying Correlations

(dFCN / TVX)
Time varying O O O

Autoregressive w/

eXogenous inputs (ARX)
Time invariant Time invariant O O

Time-varying Autoregressive

w/ eXogenous inputs (TVARX)
Time varying Time invariant O I

Table 2. Bridging the gap between network theory and control theory: extending existing correlation based models to our TVARX model. The breakdown and comparison

in terms of state space parameters elucidates how our model is a generalized version of existing definitions of static (sFCN) and dynamic (dFCN) functional connectivity and

extends networks to circuits. O: zero matrix, I: identity matrix

a comparison with our extended model (TVARX) in terms of595

parameters in our state space equations.596

The time-varying feedthrough matrix D is used as dy-

namic effective connectivity between nodes. Note that effec-

tive connectivity defined this way is akin to a general form of

Granger causality or transfer entropy (42).

U granger-causes (Ẏ ) if

Y = DU̇ +T Ẏ

where U̇ and Ẏ represent lagged values of U and V .597

yt =
m∑

i=1

diut−i +
n∑

j=1

τjyt−c + c

null hypothesis: D = 0 (lagged values of U do not explain 598

variance in Y) 599

This dynamic effective connectivity graph is a temporal 600

graph as shown in 4e and can be formally defined as a set of 601

time-stamped edges, each with its own connectivity strength 602

{(a,b, t1,Da,b),(c,d, t2,Dc,d), ....,(x,y,T,Dx,y)}. 603

Linear time invariant systems represented in state space

form can be converted into input/output transfer functions by
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(a) (b)
(c)

Fig. 5. Three steps of Circuit Discovery (a) As step 1, based on D in equation 3 after fitting on task fMRI, directed relationship between pairs of ROIs is labeled as

either Excitatory, Inhibitory or as having no relationship (φ). Label for a → b is assigned through majority count between subjects. (b) In step 2, based on pairs of directed

relationship labels a → b from step 1, an undirected label is assigned to each pair of regions, based on individual directed relationships in terms of corresponding values in

the D matrix: Da→b and Db→a. These labels are assigned also using majority count across subjects(c) In step 3, once labels of pairs of regions are determined in step 2,

cycles are identified via depth-first traversal and the cycle with the largest D value is picked as the active circuit. In our experiments, PreFrontal Limbic Circuit (PFLC) and

Ventral Stream (VS) were found to be two cycles with largest total D values for the two stimuli (faces and shapes) respectively.

applying Laplace transform

G(s) =
num(s)

den(s)
=

a0sm +a1sm−1 + · · ·+am

b0sn + b1sn−1 + · · ·+ bn
(4)

where n is generally greater than or equal to m (for a proper604

transfer function).605

State space systems can be manipulated using standard606

arithmetic operations as well as the feedback, parallel, and607

series. Vice versa, each of the connection types: feedback,608

parallel, and series represent arithmetic operations over state609

space systems and/or transfer functions as given in Figure 4610

Panel c.611

The parameters of the TVARX model are learned by max-612

imizing loglikelihood via Kalman filter. The method for cal-613

culating the covariance matrix of parameter estimates uses614

outer product of gradient estimator using Broyden-Fletcher-615

Goldfarb-Shanno (BFGS) solver. The method by which the616

Hessian is numerically approximated is outer product of gra-617

dients.618

The model is fit on seventy-five percent of the time series619

for each subject and dysregulation is measured as the error620

in prediction of the remaining twenty-five percent of the time621

series from the actual signal.622

After fitting the TVARX model to data, trajectory drift is623

measured as error between actual trajectories and trajectories624

predicted by fitted model. This error is measured using mean625

squared error. Trajectory drift is used as a measure of feed-626

back control error, or dysregulation, of each subcircuit.627

The statistical significance testing between error distribu-628

tions between different cohort of individuals is carried out629

using Welsch’s t-test to account for skewed distributions be-630

tween healthy and diseased populations.631

Circuit Discovery 632

A circuit in our framework is defined as a set of connec- 633

tions such that there exists an elementary/Eulerian circuit 634

(simple cycles) of length > 2. Each connection is defined 635

for a pair of regions and of the following four types: 636

excitatory, inhibitory, negative feedback loop and positive 637

feedback loop defined over elements of the feedthrough 638

matrix D. Excitatory and inhibitory connections between 639

x and y are defined simply as effective connections where 640

Dx,y > 0 and Dx,y < 0. Feedback loops are defined as 641

Eulerian/elementary circuits of length = 2. Positive feedback 642

loops are ones where both connections are excitatory. 643

Inversely, negative feedback loops are ones with at least one 644

inhibitory connection i.e. 645

646

Serial : Y = f(U), |D|> 0 647

648

Inhibitory : D < 0 649

Excitatory : D > 0 650

651

Parallel : Y = f(U,V ), |DU |> 0∧|DV |> 0 652

653

Feedback : Y = f(U) and U = f(Y ) 654

655

where f(U) is represented by Eq. (3) 656

Parallel connections/inputs in the circuit are implicit as 657

BOLD signal for a region y at time t is fitted against multiple 658

inputs. All excitatory and inhibitory connections are series 659

by default. 660

Discovery of circuits in our experiments is done in the fol- 661

lowing three steps: 662

1. Once TVARX model is fitted on human fMRI data, 663

based on fitted values of D matrix in equation 3, di- 664

rected relationships between pairs of ROIs is labeled 665
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as either excitatory, inhibitory or as having no rela-666

tionship (φ). The fitted value of Da→b varied for667

different subjects. Since, we use a 139-ROI par-668

cellation, the number of directed relationships equal669

1392. For each of these directed relationships Da→b,670

we have a count for each of countD<0, countD=0671

and countD>0, where countD>0 + countD>0 +672

countD<0 = N(19,831). We assign a final label for673

a→ b through majority count between subjects i.e. the674

label that was observed for most subjects was used for675

all subjects. In our results (Figure 5 panel a), we ob-676

served exponential curves, with a majority of labels be-677

ing φ (no relationship).678

2. Based on pairs of directed relationship labels a→ b679

from step 1, an undirected label is assigned to each pair680

of ROIs based on individual directed relationships as681

determined by corresponding values in the D matrix:682

Da→b and Db→a. Just as in step 1, different subjects683

have different Da→b and Db→a values. These con-684

flicts are resolved by assigning a final label based on685

majority count across subjects (Figure 5 panel b).686

3. Once labels of pairs of regions are determined in step687

2, cycles are identified via depth-first traversal and the688

cycle with the largest D value is picked as the active689

circuit. In our experiments, PreFrontal Limbic Circuit690

(PFLC) and Ventral Stream (VS) subcircuit were found691

to be two cycles with largest absolute cumulative D692

values for the two stimuli (faces and shapes) respec-693

tively. The absolute D values for PFLC and VS were694

found to be significantly larger than for other circuits695

and relationships between regions not part of PFLC696

and VS (Figure 5 panel c).697

Image Acquisition698

Task fMRI data (tfMRI) were acquired on harmonized699

Siemens 3T Skyra scanners at four UK Biobank imaging cen-700

tres (Cheadle, Manchester, Newcastle, and Reading). The701

scans were 2.4mm isotropic with TR of 0.735s and 332702

frames per run (4 mins). Each subject had one run. The703

resolution of the images is 2.4x2.4x2.4 mm with a field-of-704

view of 88x88x64 matrix. The duration was four minutes705

(332 timepoints) with TR of 0.735 s and TE of 39ms, GE-706

EPI with x8 multislice acceleration, no iPAT, flip angle 52707

degrees, and fat saturation.708

A separate "single-band reference scan" was also acquired,709

as implemented in the Center for Magnetic Resonance Re-710

search (CMRR) multiband acquisition (43). This has the711

same geometry (including echo-planar imaging distortion) as712

the timeseries data, but has higher between-tissue contrast to713

noise, and is used as the reference scan in head motion cor-714

rection and alignment to other modalities.715

Data Preprocessing 716

Spatial smoothing, using a Gaussian kernel of FWHM 5 mm, 717

was applied before the intensity normalisation, and neither 718

Independent Component Analysis (ICA) (44) nor FMRIB’s 719

ICA-based X-noiseifier (FIX) (45) artefact removal was per- 720

formed, both decisions being largely driven by the shorter 721

timeseries in the tfMRI and because of the greater general re- 722

liance in tfMRI analysis on voxelwise timeseries modeling. 723

All time series signal are standardized to z-scores (shifted to 724

zero mean and scaled to unit variance) and the global signal 725

is regressed out. 726

Pre-processing and task-induced activation modeling was 727

carried out using FEAT (FMRI Expert Analysis Tool); time- 728

series statistical analysis was carried out using FMRIB’s Im- 729

proved Linear Model (FILM) with local autocorrelation cor- 730

rection (46). The timings of the blocks of the two task condi- 731

tions (shapes and faces) are defined in 2 text files. Display of 732

the task video and logging of participant responses is carried 733

out by ePrime software. The timings of the task blocks are 734

fixed and already known as well as the correctness of subject 735

responses. For more details on data collection, processing of 736

collected images and quality control, please see (47). 737

Regions of Interest 738

The parcellation used in our experiments was provided by 739

UK Biobank and included 139 regions of interest (ROIs). 740

These ROIs are defined in MNI152 space, combining parcel- 741

lations from the following atlases: the Harvard-Oxford corti- 742

cal and subcortical atlases (20, 21) and the Diedrichsen cere- 743

bellar atlas (22). 744

Task 745

This task was adapted from the one developed by Hariri and 746

colleagues which had shown evidence as a functional local- 747

izer (14) with moderate reliability across time (48). Partici- 748

pants are presented with blocks of trials that either ask them 749

to decide which of two faces presented on the bottom of the 750

screen match the face at the top of the screen, or which of 751

two shapes presented at the bottom of the screen match the 752

shape at the top of the screen. The faces have either angry or 753

fearful expressions. Trials are presented in blocks of 6 trials 754

of the same task (face or shape), with the stimulus presented 755

for 2 s and a 1 s inter trial interval. Each block is preceded by 756

a 3 s task cue (“shape” or “face”), so that each block is 21 s 757

including the cue. Each of the two runs include 3 face blocks 758

and 3 shape blocks. 759

For facial expressions, 12 different images were used, 6 760

of each gender and affect (angry or afraid), all derived from 761

a standard set of pictures of facial affect (19). Simple geo- 762

metric shapes (circles, vertical, and horizontal ellipses) were 763

used as control stimuli. 764

Subjects were asked to match one of two simultaneously 765

presented images with an identical target image. As a sen- 766

sorimotor control task, the subjects were asked to match ge- 767
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ometric shapes. For each face block, three images of each768

gender and target affect (angry or fearful) were presented.769

For each control block, six different geometric shapes were770

presented as targets. During imaging, subjects responded by771

pressing one of two buttons with their dominant hand, allow-772

ing for the determination of accuracy and reaction time.773

Clinical Variables774

Neuroticism775

Participants were assessed for twelve domains of neurotic776

behaviours via the touchscreen questionnaire. Neuroticism777

summarises the number of Yes answers across these twelve778

questions into a single integer score for each participant. Par-779

ticipants could answer Yes, No, Do not know or Prefer not to780

answer. Questions included:781

1. Does your mood often go up and down?782

2. Do you ever feel ‘just miserable’ for no reason?783

3. Are you an irritable person?784

4. Are your feelings easily hurt?785

5. Do you often feel ‘fed-up’?786

6. Would you call yourself a nervous person?787

7. Are you a worrier?788

8. Would you call yourself tense or ’highly strung’?789

9. Do you worry too long after an embarrassing experi-790

ence?791

10. Do you suffer from ‘nerves’?792

11. Do you often feel lonely?793

12. Are you often troubled by feelings of guilt?794

This derived data field has come from Professor Jill Pell795

from the Institute of Health and Wellbeing, University of796

Glasgow (49).797

Depression798

Depression status of participants is defined from the touch-799

screen questionnaire at baseline. Each of the three depression800

states were defined based on a number of criteria:801

1. Ever felt depressed for a whole week802

2. Ever disinterested or unenthusiastic for a whole week803

3. Only 1 episode804

4. ≥ 2 episodes805

5. Episode lasted ≥ 2 weeks806

6. Ever seen a GP for nerves, anxiety, tension or depres-807

sion808

7. Ever seen a psychiatrist for nerves, anxiety, tension or809

depression810

Definitions Single Probable Major Depressive Episode: (1)811

AND (3) AND (5) AND [(6) OR (7)] OR (1) AND (3) AND812

(5) AND [(6) OR (7)]813

Probable Recurrent Major Depression (Moderate): [(1) OR 814

(2)] AND (4) AND (5) AND (6) 815

Probable Recurrent Major Depression (Severe): [(1) OR (2)] 816

AND (4) AND (5) AND (7) 817

Bipolar Disorder 818

UKB data-fields from the touchscreen (which were based on 819

the Structured Clinical Interview for DSM IV Axis I Disor- 820

ders1) were classified into criteria groups to define a probable 821

case of Bipolar I or II. 822

Bipolar I (probable mania) was classified as (1) ever manic 823

or hyper for ≥2 days OR ever irritable or argumentative for 824

≥2 days AND (2) manic episodes characterised by at least 3 825

of ‘more talkative’, ‘more active’, ‘needed less sleep’, ‘more 826

creative/more ideas’ AND (3) longest manic episode ≥ one 827

week duration AND (4) episode needed treatment or caused 828

problems at work. 829

Bipolar II (probable hypomania) classified as fulfilling crite- 830

ria (1), (2) and (3) of the Bipolar I definition, NOT criteria 831

(4). 832
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